These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 19717521)
1. De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. Wang J; Huizinga TW; Toes RE J Immunol; 2009 Sep; 183(6):4119-26. PubMed ID: 19717521 [TBL] [Abstract][Full Text] [Related]
2. Neutralization of IL-4 reverses the nonresponsiveness of CD4+ T cells to regulatory T-cell induction in non-responder mouse strains. Wang J; Han WG; Foks AC; Huizinga TW; Toes RE Mol Immunol; 2010; 48(1-3):137-46. PubMed ID: 20869773 [TBL] [Abstract][Full Text] [Related]
3. Transforming growth factor-beta and all-trans retinoic acid generate ex vivo transgenic regulatory T cells with intestinal homing receptors. Moore C; Sauma D; Morales J; Bono MR; Rosemblatt M; Fierro JA Transplant Proc; 2009; 41(6):2670-2. PubMed ID: 19715998 [TBL] [Abstract][Full Text] [Related]
4. Activin a promotes the TGF-beta-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells. Huber S; Stahl FR; Schrader J; Lüth S; Presser K; Carambia A; Flavell RA; Werner S; Blessing M; Herkel J; Schramm C J Immunol; 2009 Apr; 182(8):4633-40. PubMed ID: 19342638 [TBL] [Abstract][Full Text] [Related]
5. Dendritic cells and B cells cooperate in the generation of CD4(+)CD25(+)FOXP3(+) allogeneic T cells. Moore C; Sauma D; Reyes PA; Morales J; Rosemblatt M; Bono MR; Fierro JA Transplant Proc; 2010; 42(1):371-5. PubMed ID: 20172352 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651 [TBL] [Abstract][Full Text] [Related]
7. CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation. Atanackovic D; Cao Y; Luetkens T; Panse J; Faltz C; Arfsten J; Bartels K; Wolschke C; Eiermann T; Zander AR; Fehse B; Bokemeyer C; Kroger N Haematologica; 2008 Mar; 93(3):423-30. PubMed ID: 18287134 [TBL] [Abstract][Full Text] [Related]
8. Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. Tsaknaridis L; Spencer L; Culbertson N; Hicks K; LaTocha D; Chou YK; Whitham RH; Bakke A; Jones RE; Offner H; Bourdette DN; Vandenbark AA J Neurosci Res; 2003 Oct; 74(2):296-308. PubMed ID: 14515359 [TBL] [Abstract][Full Text] [Related]
9. Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Zhang L; Yi H; Xia XP; Zhao Y Autoimmunity; 2006 Jun; 39(4):269-76. PubMed ID: 16891215 [TBL] [Abstract][Full Text] [Related]
10. Foxp3-transduced polyclonal regulatory T cells suppress NK cell functions in a TGF-beta dependent manner. Zhou H; Chen L; You Y; Zou L; Zou P Autoimmunity; 2010 Jun; 43(4):299-307. PubMed ID: 20166879 [TBL] [Abstract][Full Text] [Related]
11. Recent thymic origin, differentiation, and turnover of regulatory T cells. Mabarrack NH; Turner NL; Mayrhofer G J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578 [TBL] [Abstract][Full Text] [Related]
12. Preparation of functionally preserved CD4+ CD25high regulatory T cells from leukapheresis products from ulcerative colitis patients, applicable to regulatory T-cell transfer therapy. Sumida Y; Nakamura K; Kanayama K; Akiho H; Teshima T; Takayanagi R Cytotherapy; 2008; 10(7):698-710. PubMed ID: 18985477 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of naive CD4+ T cells into CD4+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Mahic M; Yaqub S; Bryn T; Henjum K; Eide DM; Torgersen KM; Aandahl EM; Taskén K J Leukoc Biol; 2008 May; 83(5):1111-7. PubMed ID: 18270250 [TBL] [Abstract][Full Text] [Related]
14. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Kiniwa Y; Miyahara Y; Wang HY; Peng W; Peng G; Wheeler TM; Thompson TC; Old LJ; Wang RF Clin Cancer Res; 2007 Dec; 13(23):6947-58. PubMed ID: 18056169 [TBL] [Abstract][Full Text] [Related]
15. The significantly enhanced frequency of functional CD4+CD25+Foxp3+ T regulatory cells in therapeutic dose aspirin-treated mice. Javeed A; Zhang B; Qu Y; Zhang A; Sun C; Zhang L; Liu J; Zeng C; Zhao Y Transpl Immunol; 2009 Mar; 20(4):253-60. PubMed ID: 19146957 [TBL] [Abstract][Full Text] [Related]
16. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Chaput N; Louafi S; Bardier A; Charlotte F; Vaillant JC; Ménégaux F; Rosenzwajg M; Lemoine F; Klatzmann D; Taieb J Gut; 2009 Apr; 58(4):520-9. PubMed ID: 19022917 [TBL] [Abstract][Full Text] [Related]
17. IL-27 inhibits the development of regulatory T cells via STAT3. Huber M; Steinwald V; Guralnik A; Brüstle A; Kleemann P; Rosenplänter C; Decker T; Lohoff M Int Immunol; 2008 Feb; 20(2):223-34. PubMed ID: 18156621 [TBL] [Abstract][Full Text] [Related]
18. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Hoffmann P; Boeld TJ; Eder R; Huehn J; Floess S; Wieczorek G; Olek S; Dietmaier W; Andreesen R; Edinger M Eur J Immunol; 2009 Apr; 39(4):1088-97. PubMed ID: 19283780 [TBL] [Abstract][Full Text] [Related]
20. Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells. Lei J; Hasegawa H; Matsumoto T; Yasukawa M J Immunol; 2010 Dec; 185(12):7186-98. PubMed ID: 21057085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]