BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 19717606)

  • 21. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis.
    Daffonchio D; Raddadi N; Merabishvili M; Cherif A; Carmagnola L; Brusetti L; Rizzi A; Chanishvili N; Visca P; Sharp R; Borin S
    Appl Environ Microbiol; 2006 Feb; 72(2):1295-301. PubMed ID: 16461679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA.
    Ash C; Farrow JA; Dorsch M; Stackebrandt E; Collins MD
    Int J Syst Bacteriol; 1991 Jul; 41(3):343-6. PubMed ID: 1715736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.
    Juergensmeyer MA; Gingras BA; Restaino L; Frampton EW
    J Food Prot; 2006 Aug; 69(8):2002-6. PubMed ID: 16924932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Draft genome sequence of multidrug-resistant β-lactamase-producing Bacillus cereus S66 isolated from China.
    Song Z; Zhao Q; Zhu L; Zhang Z; Jiang L; Huang H
    J Glob Antimicrob Resist; 2019 Jun; 17():23-24. PubMed ID: 30844497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What sets Bacillus anthracis apart from other Bacillus species?
    Kolstø AB; Tourasse NJ; Økstad OA
    Annu Rev Microbiol; 2009; 63():451-76. PubMed ID: 19514852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates.
    Hill KK; Ticknor LO; Okinaka RT; Asay M; Blair H; Bliss KA; Laker M; Pardington PE; Richardson AP; Tonks M; Beecher DJ; Kemp JD; Kolstø AB; Wong AC; Keim P; Jackson PJ
    Appl Environ Microbiol; 2004 Feb; 70(2):1068-80. PubMed ID: 14766590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmid-encoded regulator of extracellular proteases in Bacillus anthracis.
    Aronson AI; Bell C; Fulroth B
    J Bacteriol; 2005 May; 187(9):3133-8. PubMed ID: 15838040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A spontaneous translational fusion of Bacillus cereus PlcR and PapR activates transcription of PlcR-dependent genes in Bacillus anthracis via binding with a specific palindromic sequence.
    Pomerantsev AP; Pomerantseva OM; Leppla SH
    Infect Immun; 2004 Oct; 72(10):5814-23. PubMed ID: 15385482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An insight into the complete biophysical and biochemical characterization of novel class A beta-lactamase (Bla1) from Bacillus anthracis.
    Bhattacharya S; Junghare V; Pandey NK; Ghosh D; Patra H; Hazra S
    Int J Biol Macromol; 2020 Feb; 145():510-526. PubMed ID: 31874266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of minisatellite polymorphisms in the Bacillus cereus complex: a simple assay for large-scale screening and identification of strains most closely related to Bacillus anthracis.
    Valjevac S; Hilaire V; Lisanti O; Ramisse F; Hernandez E; Cavallo JD; Pourcel C; Vergnaud G
    Appl Environ Microbiol; 2005 Nov; 71(11):6613-23. PubMed ID: 16269689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure.
    Mignot T; Denis B; Couture-Tosi E; Kolstø AB; Mock M; Fouet A
    Environ Microbiol; 2001 Aug; 3(8):493-501. PubMed ID: 11578310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Penicillin resistance in the intestinal spirochaete Brachyspira pilosicoli associated with OXA-136 and OXA-137, two new variants of the class D beta-lactamase OXA-63.
    Mortimer-Jones SM; Phillips ND; La T; Naresh R; Hampson DJ
    J Med Microbiol; 2008 Sep; 57(Pt 9):1122-1128. PubMed ID: 18719182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis.
    Han CS; Xie G; Challacombe JF; Altherr MR; Bhotika SS; Brown N; Bruce D; Campbell CS; Campbell ML; Chen J; Chertkov O; Cleland C; Dimitrijevic M; Doggett NA; Fawcett JJ; Glavina T; Goodwin LA; Green LD; Hill KK; Hitchcock P; Jackson PJ; Keim P; Kewalramani AR; Longmire J; Lucas S; Malfatti S; McMurry K; Meincke LJ; Misra M; Moseman BL; Mundt M; Munk AC; Okinaka RT; Parson-Quintana B; Reilly LP; Richardson P; Robinson DL; Rubin E; Saunders E; Tapia R; Tesmer JG; Thayer N; Thompson LS; Tice H; Ticknor LO; Wills PL; Brettin TS; Gilna P
    J Bacteriol; 2006 May; 188(9):3382-90. PubMed ID: 16621833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.
    Wilson MK; Abergel RJ; Raymond KN; Arceneaux JE; Byers BR
    Biochem Biophys Res Commun; 2006 Sep; 348(1):320-5. PubMed ID: 16875672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.
    Radnedge L; Agron PG; Hill KK; Jackson PJ; Ticknor LO; Keim P; Andersen GL
    Appl Environ Microbiol; 2003 May; 69(5):2755-64. PubMed ID: 12732546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group.
    Pomerantsev AP; Kalnin KV; Osorio M; Leppla SH
    Infect Immun; 2003 Nov; 71(11):6591-606. PubMed ID: 14573681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacillus anthracis sin locus and regulation of secreted proteases.
    Pflughoeft KJ; Sumby P; Koehler TM
    J Bacteriol; 2011 Feb; 193(3):631-9. PubMed ID: 21131488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis.
    Plaut RD; Beaber JW; Zemansky J; Kaur AP; George M; Biswas B; Henry M; Bishop-Lilly KA; Mokashi V; Hannah RM; Pope RK; Read TD; Stibitz S; Calendar R; Sozhamannan S
    J Bacteriol; 2014 Mar; 196(6):1143-54. PubMed ID: 24363347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of beta-lactamase in antibiotic-resistant Bacillus cereus spores.
    Fenselau C; Havey C; Teerakulkittipong N; Swatkoski S; Laine O; Edwards N
    Appl Environ Microbiol; 2008 Feb; 74(3):904-6. PubMed ID: 18065609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Lactam Resistance in
    Pandey P; Dubey AP; Mishra S; Singh VS; Singh C; Tripathi AK
    J Bacteriol; 2022 Apr; 204(4):e0001022. PubMed ID: 35352964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.