BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 19717606)

  • 41. Identification of Bacillus anthracis specific chromosomal sequences by suppressive subtractive hybridization.
    Dwyer KG; Lamonica JM; Schumacher JA; Williams LE; Bishara J; Lewandowski A; Redkar R; Patra G; DelVecchio VG
    BMC Genomics; 2004 Feb; 5(1):15. PubMed ID: 15028116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification development and characterization of the zinc-dependent metallo-β-lactamase from Bacillus anthracis.
    Schlesinger SR; Kim SG; Lee JS; Kim SK
    Biotechnol Lett; 2011 Jul; 33(7):1417-22. PubMed ID: 21369909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of Bacillus anthracis by polyclonal antibodies against extracted vegetative cell antigens.
    Phillips AP; Ezzell JW
    J Appl Bacteriol; 1989 May; 66(5):419-32. PubMed ID: 2502530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The small acid soluble proteins (SASP alpha and SASP beta) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group.
    Callahan C; Fox K; Fox A
    Mol Cell Probes; 2009 Dec; 23(6):291-7. PubMed ID: 19616612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An extracytoplasmic-function sigma factor is involved in a pathway controlling beta-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407-1.
    Espinasse S; Gohar M; Lereclus D; Sanchis V
    J Bacteriol; 2004 May; 186(10):3108-16. PubMed ID: 15126472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial susceptibility of Bacillus anthracis.
    Doğanay M; Aydin N
    Scand J Infect Dis; 1991; 23(3):333-5. PubMed ID: 1909051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis.
    Ruhfel RE; Robillard NJ; Thorne CB
    J Bacteriol; 1984 Mar; 157(3):708-11. PubMed ID: 6421798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation of Bacillus anthracis and other 'Bacillus cereus group' bacteria using IS231-derived sequences.
    Henderson I; Yu D; Turnbull PC
    FEMS Microbiol Lett; 1995 May; 128(2):113-8. PubMed ID: 7750728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes.
    Gohar M; Gilois N; Graveline R; Garreau C; Sanchis V; Lereclus D
    Proteomics; 2005 Sep; 5(14):3696-711. PubMed ID: 16167365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyperexpression in Escherichia coli, purification, and characterization of the metallo-beta-lactamase of Bacillus cereus 5/B/6.
    Shaw RW; Clark SD; Hilliard NP; Harman JG
    Protein Expr Purif; 1991; 2(2-3):151-7. PubMed ID: 1821784
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The
    Ehling-Schulz M; Lereclus D; Koehler TM
    Microbiol Spectr; 2019 May; 7(3):. PubMed ID: 31111815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727.
    Van der Auwera GA; Andrup L; Mahillon J
    BMC Genomics; 2005 Jul; 6():103. PubMed ID: 16042811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1.
    Rasko DA; Rosovitz MJ; Økstad OA; Fouts DE; Jiang L; Cer RZ; Kolstø AB; Gill SR; Ravel J
    J Bacteriol; 2007 Jan; 189(1):52-64. PubMed ID: 17041058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group.
    Cardoso PF; Perchat S; Vilas-Boas LA; Lereclus D; Vilas-Bôas GT
    Curr Genet; 2019 Dec; 65(6):1367-1381. PubMed ID: 31104082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group.
    Ahmod NZ; Gupta RS; Shah HN
    J Microbiol Methods; 2011 Dec; 87(3):278-85. PubMed ID: 21907250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A metallo-β-lactamase is responsible for the degradation of ceftiofur by the bovine intestinal bacterium Bacillus cereus P41.
    Erickson BD; Elkins CA; Mullis LB; Heinze TM; Wagner RD; Cerniglia CE
    Vet Microbiol; 2014 Aug; 172(3-4):499-504. PubMed ID: 24972871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis.
    Vilas-Bôas GT; Peruca AP; Arantes OM
    Can J Microbiol; 2007 Jun; 53(6):673-87. PubMed ID: 17668027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant.
    Agaisse H; Lereclus D
    J Bacteriol; 1994 Aug; 176(15):4734-41. PubMed ID: 8045904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of Bacillus cereus.
    de Been M; Tempelaars MH; van Schaik W; Moezelaar R; Siezen RJ; Abee T
    Environ Microbiol; 2010 Mar; 12(3):730-45. PubMed ID: 19958380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antimicrobial susceptibility and β-lactamase production in Bacillus cereus isolates from stool of patients, food and environment samples.
    Savić D; Miljković-Selimović B; Lepšanović Z; Tambur Z; Konstantinović S; Stanković N; Ristanović E
    Vojnosanit Pregl; 2016 Oct; 73(10):904-9. PubMed ID: 29327895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.