These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19717680)

  • 1. X-ray microanalysis of Rb+ entry into cricket Malpighian tubule cells via putative K+ channels.
    Marshall AT; Clode PL
    J Exp Biol; 2009 Sep; 212(18):2977-82. PubMed ID: 19717680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An X-ray microanalytical study on the effects of ouabain and N-ethyl maleimide on the elemental concentrations in Malpighian tubule cells of Locusta.
    Pivovarova N; Anstee JH; Bowler K
    Scanning Microsc Suppl; 1994; 8():37-44; discussion 44-5. PubMed ID: 7638499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ fluxes mediated by Na(+)-K(+)-Cl- cotransport and Na(+)-K(+)-ATPase pumps in renal tubule cell lines transformed by wild-type and temperature-sensitive strains of Simian virus 40.
    Vandewalle A; Vuillemin T; Teulon J; Baudouin B; Wahbe F; Bens M; Cassingéna R; Ronco P
    J Cell Physiol; 1993 Mar; 154(3):466-77. PubMed ID: 8382207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ competes with K+ in bumetanide-sensitive transport by Malpighian tubules of Rhodnius prolixus.
    Ianowski JP; Christensen RJ; O'Donnell MJ
    J Exp Biol; 2004 Oct; 207(Pt 21):3707-16. PubMed ID: 15371478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance.
    Ianowski JP; O'Donnell MJ
    J Exp Biol; 2004 Jul; 207(Pt 15):2599-609. PubMed ID: 15201292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An X-ray microanalysis study of Locusta Malpighian tubule cell function using rubidium.
    Pivovarova N; Marshall SL; Anstee JH; Bowler K
    Am J Physiol; 1994 May; 266(5 Pt 2):R1551-61. PubMed ID: 8203632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K(+) transport in Malpighian tubules of Tenebrio molitor L: a study of electrochemical gradients and basal K(+) uptake mechanisms.
    Wiehart UI; Nicolson SW; Van Kerkhove E
    J Exp Biol; 2003 Mar; 206(Pt 6):949-57. PubMed ID: 12582137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Rb(+) and Br(-) as tracers for investigating ion transport by X-ray microanalysis in the Malpighian tubules of the black field cricket Teleogryllus oceanicus.
    Marshall AT; Xu W
    J Insect Physiol; 1999 Mar; 45(3):265-273. PubMed ID: 12770374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti.
    Scott BN; Yu MJ; Lee LW; Beyenbach KW
    J Exp Biol; 2004 Apr; 207(Pt 10):1655-63. PubMed ID: 15073198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular flux of potassium and rubidium in amphibian oocytes.
    Cameron IL; Hunter KE
    Physiol Chem Phys Med NMR; 1985; 17(2):173-81. PubMed ID: 2417267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubidium-87 magnetic resonance spectroscopy and imaging for analysis of mammalian K+ transport.
    Kupriyanov VV; Gruwel ML
    NMR Biomed; 2005 Apr; 18(2):111-24. PubMed ID: 15770627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K(+) transport in Malpighian tubules of Tenebrio molitor L: is a K(ATP) channel involved?
    Wiehart UI; Klein G; Steels P; Nicolson SW; Van Kerkhove E
    J Exp Biol; 2003 Mar; 206(Pt 6):959-65. PubMed ID: 12582138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular storage of sodium and magnesium in Drosophila Malpighian tubules. X-ray microanalysis of native cryosections.
    Wessing A; Zierold K; Schäfer D
    Eur J Cell Biol; 1988 Oct; 47(1):1-6. PubMed ID: 3229416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrative, in situ approach to examining K+ flux in resting skeletal muscle.
    Lindinger MI; Hawke TJ; Vickery L; Bradford L; Lipskie SL
    Can J Physiol Pharmacol; 2001 Dec; 79(12):996-1006. PubMed ID: 11824943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron probe X-ray microanalysis of epithelial cells: aspects of cryofixation.
    Zierold K; Hentschel H; Wehner F; Wessing A
    Scanning Microsc Suppl; 1994; 8():117-26; discussion 126-7. PubMed ID: 7638480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathway for spontaneous occlusion of Rb+ in the Na+/K+-ATPase.
    González-Lebrero RM; Kaufman SB; Garrahan PJ; Rossi RC
    Biochemistry; 2008 Jun; 47(22):6073-80. PubMed ID: 18465842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ondansetron but not granisetron affect cell volume regulation and potassium ion transport of glioma cells treated with estramustine phosphate.
    Behnam-Motlagh P; Sandström PE; Henriksson R; Grankvist K
    J Cancer Res Clin Oncol; 2002 Aug; 128(8):449-55. PubMed ID: 12200602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Electrone probe microanalysis of rubidium retention in myocell of rat heart during acute ischemia].
    Pogorelov AG; Pogorelova VN; Pogorelova MA
    Biofizika; 2012; 57(5):827-31. PubMed ID: 23136775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium fluxes, energy metabolism, and oxygenation in intact diabetic rat hearts under normal and stress conditions.
    Jilkina O; Kuzio B; Kupriyanov VV
    Can J Physiol Pharmacol; 2008 Oct; 86(10):710-25. PubMed ID: 18841176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing the Na/K-ATPase with rubidium.
    Beck FX; Thurau K
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):424-8. PubMed ID: 9261981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.