These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19717724)

  • 1. Model-based evaluation of QTc interval risk: an increasing emphasis on early decision making.
    Krishna R
    J Clin Pharmacol; 2009 Sep; 49(9):1010-1. PubMed ID: 19717724
    [No Abstract]   [Full Text] [Related]  

  • 2. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs.
    Rohatagi S; Carrothers TJ; Kuwabara-Wagg J; Khariton T
    J Clin Pharmacol; 2009 Nov; 49(11):1284-96. PubMed ID: 19734373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models for profiling the potential QT prolongation risk of drugs.
    Muzikant AL; Penland RC
    Curr Opin Drug Discov Devel; 2002 Jan; 5(1):127-35. PubMed ID: 11865666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of in vitro SCREENIT results for drug-induced QT interval prolongation in vivo: a database review and analysis.
    Dumotier BM; Deurinck M; Yang Y; Traebert M; Suter W
    Pharmacol Ther; 2008 Aug; 119(2):152-9. PubMed ID: 18462801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. International Conference on Harmonisation; guidance on E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; availability. Notice.
    Food and Drug Administration, HHS
    Fed Regist; 2005 Oct; 70(202):61134-5. PubMed ID: 16237860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the probability of drug-induced QTc-interval prolongation during clinical drug development.
    Chain AS; Krudys KM; Danhof M; Della Pasqua O
    Clin Pharmacol Ther; 2011 Dec; 90(6):867-75. PubMed ID: 22048226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early clinical development: evaluation of drug-induced torsades de pointes risk.
    Vik T; Pollard C; Sager P
    Pharmacol Ther; 2008 Aug; 119(2):210-4. PubMed ID: 18601950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry.
    Stone JA; Banfield C; Pfister M; Tannenbaum S; Allerheiligen S; Wetherington JD; Krishna R; Grasela DM
    J Clin Pharmacol; 2010 Sep; 50(9 Suppl):20S-30S. PubMed ID: 20881214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnitude of QT prolongation associated with a higher risk of Torsades de Pointes.
    Lin YL; Kung MF
    Pharmacoepidemiol Drug Saf; 2009 Mar; 18(3):235-9. PubMed ID: 19145580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations for clinical trial design and data analyses of thorough QT studies using drug-drug interaction.
    Zhu H; Wang Y; Gobburu JV; Garnett CE
    J Clin Pharmacol; 2010 Oct; 50(10):1106-11. PubMed ID: 20457587
    [No Abstract]   [Full Text] [Related]  

  • 11. Concentration-QT relationships play a key role in the evaluation of proarrhythmic risk during regulatory review.
    Garnett CE; Beasley N; Bhattaram VA; Jadhav PR; Madabushi R; Stockbridge N; Tornøe CW; Wang Y; Zhu H; Gobburu JV
    J Clin Pharmacol; 2008 Jan; 48(1):13-8. PubMed ID: 18094216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(monoacylglycerol)phosphate as a non-invasive biomarker to monitor the onset and time-course of phospholipidosis with drug-induced toxicities.
    Tengstrand EA; Miwa GT; Hsieh FY
    Expert Opin Drug Metab Toxicol; 2010 May; 6(5):555-70. PubMed ID: 20370598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commentary on the clinical relevance of concentration/QTc relationships for new drug candidates.
    Bloomfield D; Krishna R
    J Clin Pharmacol; 2008 Jan; 48(1):6-8. PubMed ID: 18094214
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluation and recommendations on adaptive dose-ranging trials: highlights from the PhRMA Adaptive Dose-Ranging Studies Working Group.
    Pinheiro J
    J Clin Pharmacol; 2010 Sep; 50(9 Suppl):47S-49S. PubMed ID: 20881216
    [No Abstract]   [Full Text] [Related]  

  • 15. Operational Characteristics of Linear Concentration-QT Models for Assessing QTc Interval in the Thorough QT and Phase I Clinical Studies.
    Garnett C; Needleman K; Liu J; Brundage R; Wang Y
    Clin Pharmacol Ther; 2016 Aug; 100(2):170-8. PubMed ID: 26946218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U-shaped dose response in behavioral pharmacology: historical foundations.
    Calabrese EJ
    Crit Rev Toxicol; 2008; 38(7):591-8. PubMed ID: 18709567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization concepts to enhance quantitative decision making in drug development.
    Dykstra K; Pugh R; Krause A
    J Clin Pharmacol; 2010 Sep; 50(9 Suppl):130S-139S. PubMed ID: 20881226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logarithmic dose transformation in epidemiologic dose-response analysis: use with caution.
    Ginevan ME; Watkins DK
    Regul Toxicol Pharmacol; 2010 Nov; 58(2):336-40. PubMed ID: 20655968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing proarrhythmic potential of drugs when optimal studies are infeasible.
    Rock EP; Finkle J; Fingert HJ; Booth BP; Garnett CE; Grant S; Justice RL; Kovacs RJ; Kowey PR; Rodriguez I; Sanhai WR; Strnadova C; Targum SL; Tsong Y; Uhl K; Stockbridge N
    Am Heart J; 2009 May; 157(5):827-36, 836.e1. PubMed ID: 19376308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective on the use of concentration-QT modeling in drug development.
    Russell T; Riley SP; Cook JA; Lalonde RL
    J Clin Pharmacol; 2008 Jan; 48(1):9-12. PubMed ID: 18094215
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.