These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 19717740)
21. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. Staab JF; Datta K; Rhee P PLoS One; 2013; 8(11):e80842. PubMed ID: 24260489 [TBL] [Abstract][Full Text] [Related]
22. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Leach MD; Stead DA; Argo E; MacCallum DM; Brown AJ Mol Microbiol; 2011 Mar; 79(6):1574-93. PubMed ID: 21269335 [TBL] [Abstract][Full Text] [Related]
23. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans. Wu Y; Wu M; Wang Y; Chen Y; Gao J; Ying C FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29931064 [TBL] [Abstract][Full Text] [Related]
24. Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Menon V; Li D; Chauhan N; Rajnarayanan R; Dubrovska A; West AH; Calderone R Mol Microbiol; 2006 Nov; 62(4):997-1013. PubMed ID: 17038117 [TBL] [Abstract][Full Text] [Related]
25. The Rbf1, Hfl1 and Dbp4 of Candida albicans regulate common as well as transcription factor-specific mitochondrial and other cell activities. Khamooshi K; Sikorski P; Sun N; Calderone R; Li D BMC Genomics; 2014 Jan; 15():56. PubMed ID: 24450762 [TBL] [Abstract][Full Text] [Related]
26. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans. Li X; Du W; Zhao J; Zhang L; Zhu Z; Jiang L FEMS Yeast Res; 2010 Jun; 10(4):441-51. PubMed ID: 20402792 [TBL] [Abstract][Full Text] [Related]
27. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. Ramírez-Zavala B; Krüger I; Dunker C; Jacobsen ID; Morschhäuser J PLoS Pathog; 2022 Feb; 18(2):e1010283. PubMed ID: 35108336 [TBL] [Abstract][Full Text] [Related]
28. The RIM101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis. Yuan X; Mitchell BM; Hua X; Davis DA; Wilhelmus KR Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4668-76. PubMed ID: 20375342 [TBL] [Abstract][Full Text] [Related]
30. The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Poltermann S; Nguyen M; Günther J; Wendland J; Härtl A; Künkel W; Zipfel PF; Eck R Microbiology (Reading); 2005 May; 151(Pt 5):1645-1655. PubMed ID: 15870472 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. Menon V; De Bernardis F; Calderone R; Chauhan N FEMS Yeast Res; 2008 Aug; 8(5):756-63. PubMed ID: 18616606 [TBL] [Abstract][Full Text] [Related]
32. Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. Ko HC; Hsiao TY; Chen CT; Yang YL J Microbiol; 2013 Jun; 51(3):345-51. PubMed ID: 23812815 [TBL] [Abstract][Full Text] [Related]
33. Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans. Silao FGS; Ryman K; Jiang T; Ward M; Hansmann N; Molenaar C; Liu NN; Chen C; Ljungdahl PO PLoS Pathog; 2020 Sep; 16(9):e1008328. PubMed ID: 32936835 [TBL] [Abstract][Full Text] [Related]
34. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
35. Bmh1p (14-3-3) mediates pathways associated with virulence in Candida albicans. Kelly MN; Johnston DA; Peel BA; Morgan TW; Palmer GE; Sturtevant JE Microbiology (Reading); 2009 May; 155(Pt 5):1536-1546. PubMed ID: 19372164 [TBL] [Abstract][Full Text] [Related]
36. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
37. Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Strijbis K; van Roermund CW; Visser WF; Mol EC; van den Burg J; MacCallum DM; Odds FC; Paramonova E; Krom BP; Distel B Eukaryot Cell; 2008 Apr; 7(4):610-8. PubMed ID: 18281597 [TBL] [Abstract][Full Text] [Related]
38. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Dagley MJ; Gentle IE; Beilharz TH; Pettolino FA; Djordjevic JT; Lo TL; Uwamahoro N; Rupasinghe T; Tull DL; McConville M; Beaurepaire C; Nantel A; Lithgow T; Mitchell AP; Traven A Mol Microbiol; 2011 Feb; 79(4):968-89. PubMed ID: 21299651 [TBL] [Abstract][Full Text] [Related]
39. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Jackson BE; Wilhelmus KR; Mitchell BM Microb Pathog; 2007; 42(2-3):88-93. PubMed ID: 17241762 [TBL] [Abstract][Full Text] [Related]
40. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Sun N; Fonzi W; Chen H; She X; Zhang L; Zhang L; Calderone R Antimicrob Agents Chemother; 2013 Jan; 57(1):532-42. PubMed ID: 23147730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]