These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19718214)

  • 1. Stimulated Raman scattering in fibers in the ultraviolet.
    Rothschild M; Abad H
    Opt Lett; 1983 Dec; 8(12):653-5. PubMed ID: 19718214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of stimulated four-photon mixing and efficient Stokes generation of stimulated Raman scattering in excimer-laser-pumped UV multimode fibers.
    Liu KX; Garmire E
    Opt Lett; 1991 Feb; 16(3):174-6. PubMed ID: 19773873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical gain exceeding 35 dB at 1.56 microm due to stimulated Raman scattering by molecular D(2) in a solid silica optical fiber.
    Chraplyvy AR; Stone J; Burrus CA
    Opt Lett; 1983 Jul; 8(7):415-7. PubMed ID: 19718133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering.
    Smith RG
    Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser.
    Demidovich AA; Grabtchikov AS; Lisinetskii VA; Burakevich VN; Orlovich VA; Kiefer W
    Opt Lett; 2005 Jul; 30(13):1701-3. PubMed ID: 16075543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-in-glass-a new Raman-gain medium: molecular hydrogen in solid-silica optical fibers.
    Stone J; Chraplyvy AR; Burrus CA
    Opt Lett; 1982 Jun; 7(6):297-9. PubMed ID: 19710905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient.
    Kulkarni OP; Xia C; Lee DJ; Kumar M; Kuditcher A; Islam MN; Terry FL; Freeman MJ; Aitken BG; Currie SC; McCarthy JE; Powley ML; Nolan DA
    Opt Express; 2006 Aug; 14(17):7924-30. PubMed ID: 19529161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride glass Raman fiber laser at 2185 nm.
    Fortin V; Bernier M; Carrier J; Vallée R
    Opt Lett; 2011 Nov; 36(21):4152-4. PubMed ID: 22048348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwatts narrow linewidth fiber Raman amplifiers.
    Feng Y; Taylor L; Bonaccini Calia D
    Opt Express; 2008 Jul; 16(15):10927-32. PubMed ID: 18648406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-photon-mixing-mediated stimulated Raman scattering in a multimode optical fiber.
    Sharma A; Dokhanian M; Wu Z; Williams A; Venkateswarlu P
    Opt Lett; 1994 Aug; 19(15):1122-4. PubMed ID: 19844550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star.
    Zhang L; Hu J; Wang J; Feng Y
    Opt Lett; 2012 Nov; 37(22):4796-8. PubMed ID: 23164917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband infrared generation in liquid-bromine-core optical fibers.
    Bridges TJ; Chraplyvy AR; Bergman JG; Hart RM
    Opt Lett; 1982 Nov; 7(11):566-8. PubMed ID: 19714093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-core As-Se fiber for Raman amplification.
    Thielen PA; Shaw LB; Pureza PC; Nguyen VQ; Sanghera JS; Aggarwal ID
    Opt Lett; 2003 Aug; 28(16):1406-8. PubMed ID: 12943073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random fiber laser based on artificially controlled backscattering fibers.
    Wang X; Chen D; Li H; She L; Wu Q
    Appl Opt; 2018 Jan; 57(2):258-262. PubMed ID: 29328173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross talk caused by stimulated Raman scattering in single-mode wavelength-division multiplexed systems.
    Tomita A
    Opt Lett; 1983 Jul; 8(7):412-4. PubMed ID: 19718132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-mode Raman fiber laser based on a multimode fiber.
    Baek SH; Roh WB
    Opt Lett; 2004 Jan; 29(2):153-5. PubMed ID: 14743995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.
    Glick Y; Fromzel V; Zhang J; Ter-Gabrielyan N; Dubinskii M
    Appl Opt; 2017 Jan; 56(3):B97-B102. PubMed ID: 28157871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse delay measurements in the zero material dispersion wavelength region for optical fibers.
    Cohen LG; Lin C
    Appl Opt; 1977 Dec; 16(12):3136-9. PubMed ID: 20174316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of picosecond pulse nonlinear propagation in chalcogenide As(2)S(3) fiber.
    Xiong C; Magi E; Luan F; Tuniz A; Dekker S; Sanghera JS; Shaw LB; Aggarwal ID; Eggleton BJ
    Appl Opt; 2009 Oct; 48(29):5467-74. PubMed ID: 19823228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.