BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19718653)

  • 1. In situ growth of gold nanoparticles by enzymatic glucose oxidation within alginate gel matrix.
    Lim SY; Lee JS; Park CB
    Biotechnol Bioeng; 2010 Jan; 105(1):210-4. PubMed ID: 19718653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical studies of glucose oxidase immobilized on glutathione coated gold nanoparticles.
    Akella S; Mitra CK
    Indian J Biochem Biophys; 2007 Apr; 44(2):82-7. PubMed ID: 17536335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles.
    Rangnekar A; Sarma TK; Singh AK; Deka J; Ramesh A; Chattopadhyay A
    Langmuir; 2007 May; 23(10):5700-6. PubMed ID: 17425338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems.
    Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I
    Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Os(II)--bisbipyridine--4-picolinic acid complex mediates the biocatalytic growth of au nanoparticles: optical detection of glucose and acetylcholine esterase inhibition.
    Xiao Y; Pavlov V; Shlyahovsky B; Willner I
    Chemistry; 2005 Apr; 11(9):2698-704. PubMed ID: 15729675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design.
    Shang L; Chen H; Deng L; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver uptake and nanoprecipitation on calcium alginate beads.
    Torres E; Mata YN; Blázquez ML; Muñoz JA; González F; Ballester A
    Langmuir; 2005 Aug; 21(17):7951-8. PubMed ID: 16089404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application.
    Qiu JD; Wang R; Liang RP; Xia XH
    Biosens Bioelectron; 2009 May; 24(9):2920-5. PubMed ID: 19327978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design.
    Zhou N; Wang J; Chen T; Yu Z; Li G
    Anal Chem; 2006 Jul; 78(14):5227-30. PubMed ID: 16841954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-catalyzed bio-pumping of electrons into au-nanoparticles: a surface plasmon resonance and electrochemical study.
    Lioubashevski O; Chegel VI; Patolsky F; Katz E; Willner I
    J Am Chem Soc; 2004 Jun; 126(22):7133-43. PubMed ID: 15174885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: a model study.
    Odaci D; Kahveci MU; Sahkulubey EL; Ozdemir C; Uyar T; Timur S; Yagci Y
    Bioelectrochemistry; 2010 Oct; 79(2):211-7. PubMed ID: 20605749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors.
    Wang F; Liu X; Lu CH; Willner I
    ACS Nano; 2013 Aug; 7(8):7278-86. PubMed ID: 23829431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor.
    Zhang S; Wang N; Yu H; Niu Y; Sun C
    Bioelectrochemistry; 2005 Sep; 67(1):15-22. PubMed ID: 15967397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled electrophoretic deposition of multifunctional nanomodules for bioelectrochemical applications.
    Dondapati SK; Lozano-Sanchez P; Katakis I
    Biosens Bioelectron; 2008 Sep; 24(1):55-9. PubMed ID: 18472416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase.
    Komathi S; Gopalan AI; Lee KP
    Biosens Bioelectron; 2009 Jun; 24(10):3131-4. PubMed ID: 19375906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering.
    Hernández R; Sacristán J; Nogales A; Ezquerra TA; Mijangos C
    Langmuir; 2009 Nov; 25(22):13212-8. PubMed ID: 19769342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wired-enzyme core-shell Au nanoparticle biosensor.
    Scodeller P; Flexer V; Szamocki R; Calvo EJ; Tognalli N; Troiani H; Fainstein A
    J Am Chem Soc; 2008 Sep; 130(38):12690-7. PubMed ID: 18763764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.