These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19718737)

  • 1. Asymmetric reductive amination by combined Brønsted acid and transition-metal catalysis.
    Klussmann M
    Angew Chem Int Ed Engl; 2009; 48(39):7124-5. PubMed ID: 19718737
    [No Abstract]   [Full Text] [Related]  

  • 2. Cooperative transition-metal and chiral Brønsted acid catalysis: enantioselective hydrogenation of imines to form amines.
    Zhou S; Fleischer S; Junge K; Beller M
    Angew Chem Int Ed Engl; 2011 May; 50(22):5120-4. PubMed ID: 21500329
    [No Abstract]   [Full Text] [Related]  

  • 3. Consecutive intermolecular reductive hydroamination: cooperative transition-metal and chiral Brønsted acid catalysis.
    Fleischer S; Werkmeister S; Zhou S; Junge K; Beller M
    Chemistry; 2012 Jul; 18(29):9005-10. PubMed ID: 22707210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-metal catalysis as a tool for the covalent labeling of proteins.
    van Maarseveen JH; Reek JN; Back JW
    Angew Chem Int Ed Engl; 2006 Mar; 45(12):1841-3. PubMed ID: 16493720
    [No Abstract]   [Full Text] [Related]  

  • 5. Brønsted acid activation strategy in transition-metal catalyzed asymmetric hydrogenation of N-unprotected imines, enamines, and N-heteroaromatic compounds.
    Yu Z; Jin W; Jiang Q
    Angew Chem Int Ed Engl; 2012 Jun; 51(25):6060-72. PubMed ID: 22577004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile formation of cyclic aminals through a Brønsted acid-promoted redox process.
    Zhang C; Murarka S; Seidel D
    J Org Chem; 2009 Jan; 74(1):419-22. PubMed ID: 19053590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brønsted acid differentiated metal catalysis by kinetic discrimination.
    Rueping M; Koenigs RM
    Chem Commun (Camb); 2011 Jan; 47(1):304-6. PubMed ID: 20717581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis.
    Dobereiner GE; Crabtree RH
    Chem Rev; 2010 Feb; 110(2):681-703. PubMed ID: 19938813
    [No Abstract]   [Full Text] [Related]  

  • 9. Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones via rhodium-catalyzed asymmetric hydrogenation: mechanistic insight into the role of Brønsted acid additives.
    Komanduri V; Krische MJ
    J Am Chem Soc; 2006 Dec; 128(51):16448-9. PubMed ID: 17177363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brønsted acid-catalyzed decarboxylative redox amination: formation of N-alkylindoles from azomethine ylides by isomerization.
    Mao H; Wang S; Yu P; Lv H; Xu R; Pan Y
    J Org Chem; 2011 Feb; 76(4):1167-9. PubMed ID: 21244002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the catalytic asymmetric synthesis of beta-amino acids.
    Weiner B; Szymański W; Janssen DB; Minnaard AJ; Feringa BL
    Chem Soc Rev; 2010 May; 39(5):1656-91. PubMed ID: 20419214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids.
    Kadyrov R; Riermeier TH; Dingerdissen U; Tararov V; Börner A
    J Org Chem; 2003 May; 68(10):4067-70. PubMed ID: 12737592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Brønsted acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones by using aqueous H2O2.
    Xu S; Wang Z; Zhang X; Zhang X; Ding K
    Angew Chem Int Ed Engl; 2008; 47(15):2840-3. PubMed ID: 18324654
    [No Abstract]   [Full Text] [Related]  

  • 14. Direct asymmetric reductive amination.
    Steinhuebel D; Sun Y; Matsumura K; Sayo N; Saito T
    J Am Chem Soc; 2009 Aug; 131(32):11316-7. PubMed ID: 19637921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts.
    Chen F; Ding Z; Qin J; Wang T; He Y; Fan QH
    Org Lett; 2011 Aug; 13(16):4348-51. PubMed ID: 21766831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More than bystanders: the effect of olefins on transition-metal-catalyzed cross-coupling reactions.
    Johnson JB; Rovis T
    Angew Chem Int Ed Engl; 2008; 47(5):840-71. PubMed ID: 18081111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brønsted base-modulated regioselective pd-catalyzed intramolecular aerobic oxidative amination of alkenes: formation of seven-membered amides and evidence for allylic C-H activation.
    Wu L; Qiu S; Liu G
    Org Lett; 2009 Jun; 11(12):2707-10. PubMed ID: 19456146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition-metal-catalyzed diamination of olefins.
    de Figueiredo RM
    Angew Chem Int Ed Engl; 2009; 48(7):1190-3. PubMed ID: 19142917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-selective transition-metal catalyzed arene C-H bond functionalization.
    Zhou Y; Zhao J; Liu L
    Angew Chem Int Ed Engl; 2009; 48(39):7126-8. PubMed ID: 19655360
    [No Abstract]   [Full Text] [Related]  

  • 20. Tuneable asymmetric copper-catalysed allylic amination and oxidation reactions.
    Clark JS; Roche C
    Chem Commun (Camb); 2005 Nov; (41):5175-7. PubMed ID: 16228026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.