These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
3. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297 [TBL] [Abstract][Full Text] [Related]
8. Neurons tune to the earliest spikes through STDP. Guyonneau R; VanRullen R; Thorpe SJ Neural Comput; 2005 Apr; 17(4):859-79. PubMed ID: 15829092 [TBL] [Abstract][Full Text] [Related]
9. An implementation of reinforcement learning based on spike timing dependent plasticity. Roberts PD; Santiago RA; Lafferriere G Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775 [TBL] [Abstract][Full Text] [Related]
10. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach. Zhu L; Lai YC; Hoppensteadt FC; He J Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008 [TBL] [Abstract][Full Text] [Related]
11. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070 [TBL] [Abstract][Full Text] [Related]
13. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560 [TBL] [Abstract][Full Text] [Related]
14. Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Bohte SM; Mozer MC Neural Comput; 2007 Feb; 19(2):371-403. PubMed ID: 17206869 [TBL] [Abstract][Full Text] [Related]
15. Impact of deviation from precise balance of spike-timing-dependent plasticity. Matsumoto N; Okada M Neural Netw; 2004 Sep; 17(7):917-24. PubMed ID: 15312835 [TBL] [Abstract][Full Text] [Related]
17. Self-organizing dual coding based on spike-time-dependent plasticity. Masuda N; Aihara K Neural Comput; 2004 Mar; 16(3):627-63. PubMed ID: 15006094 [TBL] [Abstract][Full Text] [Related]
18. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning. Shen X; Lin X; De Wilde P Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082 [TBL] [Abstract][Full Text] [Related]
19. Inhibition, not excitation, is the key to multimodal sensory integration. Friedel P; van Hemmen JL Biol Cybern; 2008 Jun; 98(6):597-618. PubMed ID: 18491169 [TBL] [Abstract][Full Text] [Related]
20. Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations. Baroni F; Varona P J Physiol Paris; 2010; 104(1-2):91-8. PubMed ID: 19913095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]