These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19719156)

  • 1. A label-free porous alumina interferometric immunosensor.
    Alvarez SD; Li CP; Chiang CE; Schuller IK; Sailor MJ
    ACS Nano; 2009 Oct; 3(10):3301-7. PubMed ID: 19719156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays.
    Mun KS; Alvarez SD; Choi WY; Sailor MJ
    ACS Nano; 2010 Apr; 4(4):2070-6. PubMed ID: 20356100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon.
    Li J; Sailor MJ
    Biosens Bioelectron; 2014 May; 55():372-8. PubMed ID: 24419080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor.
    Li J; Zhao X; Wei H; Gu ZZ; Lu Z
    Anal Chim Acta; 2008 Sep; 625(1):63-9. PubMed ID: 18721541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable porous silicon-carbon composites as label-free optical biosensors.
    Tsang CK; Kelly TL; Sailor MJ; Li YY
    ACS Nano; 2012 Dec; 6(12):10546-54. PubMed ID: 23116211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions.
    Schmitt K; Schirmer B; Hoffmann C; Brandenburg A; Meyrueis P
    Biosens Bioelectron; 2007 May; 22(11):2591-7. PubMed ID: 17125988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflective interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2.
    Pacholski C; Yu C; Miskelly GM; Godin D; Sailor MJ
    J Am Chem Soc; 2006 Apr; 128(13):4250-2. PubMed ID: 16568999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous alumina-based interferometric transducers ennobled.
    Dronov R; Jane A; Shapter JG; Hodges A; Voelcker NH
    Nanoscale; 2011 Aug; 3(8):3109-14. PubMed ID: 21347501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals.
    Stewart ME; Yao J; Maria J; Gray SK; Rogers JA; Nuzzo RG
    Anal Chem; 2009 Aug; 81(15):5980-9. PubMed ID: 19591455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits and limitations of porous substrates as biosensors for protein adsorption.
    Lazzara TD; Mey I; Steinem C; Janshoff A
    Anal Chem; 2011 Jul; 83(14):5624-30. PubMed ID: 21651041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thin-film structural parameters on laser desorption/ionization from porous alumina.
    Nayak R; Knapp DR
    Anal Chem; 2007 Jul; 79(13):4950-6. PubMed ID: 17547367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference localized surface plasmon resonance nanosensor tailored for the detection of specific biomolecular interactions.
    Hiep HM; Yoshikawa H; Tamiya E
    Anal Chem; 2010 Feb; 82(4):1221-7. PubMed ID: 20073504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of mixed Langmuir-Blodgett films of immunoglobulin G/amphiphile and their application for immunosensor engineering.
    Hou Y; Tlili C; Jaffrezic-Renault N; Zhang A; Martelet C; Ponsonnet L; Errachid A; Samitier J; Bausells J
    Biosens Bioelectron; 2004 Dec; 20(6):1126-33. PubMed ID: 15556358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ thickness measurement of porous alumina by atomic force microscopy and the reflectance wavelength measurement from 400-1000 nm.
    Zhang D; Zhang H; He Y
    Microsc Res Tech; 2006 Apr; 69(4):267-70. PubMed ID: 16586487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody oriented immobilization on gold using the reaction between carbon disulfide and amine groups and its application in immunosensing.
    Niu Y; Matos AI; Abrantes LM; Viana AS; Jin G
    Langmuir; 2012 Dec; 28(51):17718-25. PubMed ID: 23210719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures.
    Kim DK; Kerman K; Hiep HM; Saito M; Yamamura S; Takamura Y; Kwon YS; Tamiya E
    Anal Biochem; 2008 Aug; 379(1):1-7. PubMed ID: 18485275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyzed oxidative corrosion of porous silicon used as an optical transducer for ligand-receptor interactions.
    Voelcker NH; Alfonso I; Ghadiri MR
    Chembiochem; 2008 Jul; 9(11):1776-86. PubMed ID: 18576449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein A to immunoglobulins derived from different species.
    Schwartz MP; Alvarez SD; Sailor MJ
    Anal Chem; 2007 Jan; 79(1):327-34. PubMed ID: 17194157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.