BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19719173)

  • 1. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB.
    Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC
    J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system.
    Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic pathways of mercury removal from the organomercurial lyase active site.
    Silva PJ; Rodrigues V
    PeerJ; 2015; 3():e1127. PubMed ID: 26246970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation.
    Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG
    J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB.
    Karri R; Das R; Rai RK; Gopalakrishnan A; Roy G
    Chem Commun (Camb); 2020 Aug; 56(65):9280-9283. PubMed ID: 32558833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonolysis of the Hg-C bond of chloromethylmercury and dimethylmercury. A DFT and QTAIM study.
    Ni B; Kramer JR; Bell RA; Werstiuk NH
    J Phys Chem A; 2006 Aug; 110(30):9451-8. PubMed ID: 16869696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of thiols in the bacterial organomercurial lyase (MerB).
    Pitts KE; Summers AO
    Biochemistry; 2002 Aug; 41(32):10287-96. PubMed ID: 12162744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione .
    Hong B; Nauss R; Harwood IM; Miller SM
    Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA).
    Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD
    Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT studies of the degradation mechanism of methyl mercury activated by a sulfur-rich ligand.
    Li X; Liao RZ; Zhou W; Chen G
    Phys Chem Chem Phys; 2010 Apr; 12(16):3961-71. PubMed ID: 20379488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB.
    Melnick JG; Parkin G
    Science; 2007 Jul; 317(5835):225-7. PubMed ID: 17626880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of hydroxynitrile lyase from Hevea brasiliensis: a theoretical investigation.
    Cui FC; Pan XL; Liu JY
    J Phys Chem B; 2010 Jul; 114(29):9622-8. PubMed ID: 20593768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of DNA backbone cleavage by the restriction enzyme EcoRV: a quantum mechanical/molecular mechanical analysis.
    Imhof P; Fischer S; Smith JC
    Biochemistry; 2009 Sep; 48(38):9061-75. PubMed ID: 19678693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.