BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19719480)

  • 1. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria.
    Zurbriggen MD; Carrillo N; Tognetti VB; Melzer M; Peisker M; Hause B; Hajirezaei MR
    Plant J; 2009 Dec; 60(6):962-73. PubMed ID: 19719480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium
    Pierella Karlusich JJ; Zurbriggen MD; Shahinnia F; Sonnewald S; Sonnewald U; Hosseini SA; Hajirezaei MR; Carrillo N
    Front Plant Sci; 2017; 8():1158. PubMed ID: 28725231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Xanthomonas campestris pv. vesicatoria Type-3 Effector XopB Inhibits Plant Defence Responses by Interfering with ROS Production.
    Priller JP; Reid S; Konein P; Dietrich P; Sonnewald S
    PLoS One; 2016; 11(7):e0159107. PubMed ID: 27398933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity.
    Kim NH; Hwang BK
    Plant Physiol; 2015 Feb; 167(2):307-22. PubMed ID: 25491184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Reactive Oxygen Species Accumulation in Chloroplasts Prevents Leaf Damage but Not Growth Arrest in Salt-Stressed Tobacco Plants.
    Lodeyro AF; Giró M; Poli HO; Bettucci G; Cortadi A; Ferri AM; Carrillo N
    PLoS One; 2016; 11(7):e0159588. PubMed ID: 27441560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses.
    Kim DS; Hwang BK
    Plant J; 2011 May; 66(4):642-55. PubMed ID: 21299658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana.
    Metz M; Dahlbeck D; Morales CQ; Al Sady B; Clark ET; Staskawicz BJ
    Plant J; 2005 Mar; 41(6):801-14. PubMed ID: 15743446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses.
    Kim DS; Kim NH; Hwang BK
    J Exp Bot; 2015 Apr; 66(7):1987-99. PubMed ID: 25694549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm.
    Lee DH; Kim DS; Hwang BK
    Plant J; 2012 Oct; 72(2):235-48. PubMed ID: 22640562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens.
    Kim DS; Hwang BK
    J Exp Bot; 2014 Jun; 65(9):2295-306. PubMed ID: 24642849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.
    Kim NH; Hwang BK
    Plant J; 2015 Jan; 81(1):81-94. PubMed ID: 25335438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence.
    Üstün S; Bartetzko V; Börnke F
    PLoS Pathog; 2013; 9(6):e1003427. PubMed ID: 23785289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a Plastid-Targeted Flavodoxin Decreases Chloroplast Reactive Oxygen Species Accumulation and Delays Senescence in Aging Tobacco Leaves.
    Mayta ML; Lodeyro AF; Guiamet JJ; Tognetti VB; Melzer M; Hajirezaei MR; Carrillo N
    Front Plant Sci; 2018; 9():1039. PubMed ID: 30065745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat.
    Lee WS; Devonshire BJ; Hammond-Kosack KE; Rudd JJ; Kanyuka K
    Mol Plant Microbe Interact; 2015 May; 28(5):590-604. PubMed ID: 25496594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens.
    Hwang IS; An SH; Hwang BK
    Plant J; 2011 Sep; 67(5):749-62. PubMed ID: 21535260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses.
    Kim NH; Hwang BK
    J Exp Bot; 2015 Jun; 66(11):3367-80. PubMed ID: 25873668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.
    Daurelio LD; Romero MS; Petrocelli S; Merelo P; Cortadi AA; Talón M; Tadeo FR; Orellano EG
    J Plant Physiol; 2013 Jul; 170(10):934-42. PubMed ID: 23453188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for a menthone reductase in resistance against microbial pathogens in plants.
    Choi HW; Lee BG; Kim NH; Park Y; Lim CW; Song HK; Hwang BK
    Plant Physiol; 2008 Sep; 148(1):383-401. PubMed ID: 18599651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response.
    Choi HW; Lee DH; Hwang BK
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1389-400. PubMed ID: 19810808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.