These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 19719591)
1. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. Gupta Sood S FEMS Microbiol Ecol; 2003 Aug; 45(3):219-27. PubMed ID: 19719591 [TBL] [Abstract][Full Text] [Related]
2. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). Kumar R; Bhatia R; Kukreja K; Behl RK; Dudeja SS; Narula N J Basic Microbiol; 2007 Oct; 47(5):436-9. PubMed ID: 17910096 [TBL] [Abstract][Full Text] [Related]
3. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
4. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Feng G; Zhang FS; Li XL; Tian CY; Tang C; Rengel Z Mycorrhiza; 2002 Aug; 12(4):185-90. PubMed ID: 12189473 [TBL] [Abstract][Full Text] [Related]
5. Mucoid mutants of the biocontrol strain pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Bianciotto V; Andreotti S; Balestrini R; Bonfante P; Perotto S Mol Plant Microbe Interact; 2001 Feb; 14(2):255-60. PubMed ID: 11204790 [TBL] [Abstract][Full Text] [Related]
6. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Rapparini F; Llusià J; Peñuelas J Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551 [TBL] [Abstract][Full Text] [Related]
7. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. Jäderlund L; Arthurson V; Granhall U; Jansson JK FEMS Microbiol Lett; 2008 Oct; 287(2):174-80. PubMed ID: 18754788 [TBL] [Abstract][Full Text] [Related]
8. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Wu N; Huang H; Zhang S; Zhu YG; Christie P; Zhang Y Environ Pollut; 2009 May; 157(5):1613-8. PubMed ID: 19168268 [TBL] [Abstract][Full Text] [Related]
9. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. Toljander JF; Artursson V; Paul LR; Jansson JK; Finlay RD FEMS Microbiol Lett; 2006 Jan; 254(1):34-40. PubMed ID: 16451176 [TBL] [Abstract][Full Text] [Related]
10. Accumulation and speciation of selenium in plants as affected by arbuscular mycorrhizal fungus Glomus mosseae. Yu Y; Zhang S; Wen B; Huang H; Luo L Biol Trace Elem Res; 2011 Dec; 143(3):1789-98. PubMed ID: 21271295 [TBL] [Abstract][Full Text] [Related]
11. Influence of Soil Temperature and Matric Potential on Sugar Beet Seedling Colonization and Suppression of Pythium Damping-Off by the Antagonistic Bacteria Pseudomonas fluorescens and Bacillus subtilis. Schmidt CS; Agostini F; Leifert C; Killham K; Mullins CE Phytopathology; 2004 Apr; 94(4):351-63. PubMed ID: 18944111 [TBL] [Abstract][Full Text] [Related]
12. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. de Andrade SA; da Silveira AP; Jorge RA; de Abreu MF Int J Phytoremediation; 2008; 10(1):1-13. PubMed ID: 18709928 [TBL] [Abstract][Full Text] [Related]
13. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Schliemann W; Ammer C; Strack D Phytochemistry; 2008 Jan; 69(1):112-46. PubMed ID: 17706732 [TBL] [Abstract][Full Text] [Related]
14. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Gamalero E; Lingua G; Berta G; Glick BR Can J Microbiol; 2009 May; 55(5):501-14. PubMed ID: 19483778 [TBL] [Abstract][Full Text] [Related]
15. Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. Pivato B; Gamalero E; Lemanceau P; Berta G FEMS Microbiol Lett; 2008 Dec; 289(2):173-80. PubMed ID: 19016872 [TBL] [Abstract][Full Text] [Related]
16. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Sheng M; Tang M; Chen H; Yang B; Zhang F; Huang Y Can J Microbiol; 2009 Jul; 55(7):879-86. PubMed ID: 19767861 [TBL] [Abstract][Full Text] [Related]
17. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. de Weert S; Vermeiren H; Mulders IH; Kuiper I; Hendrickx N; Bloemberg GV; Vanderleyden J; De Mot R; Lugtenberg BJ Mol Plant Microbe Interact; 2002 Nov; 15(11):1173-80. PubMed ID: 12423023 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chen X; Wu C; Tang J; Hu S Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805 [TBL] [Abstract][Full Text] [Related]
19. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
20. Motility and chemotactic response of Pseudomonas fluorescens toward chemoattractants present in the exudate of Macrophomina phaseolina. Singh T; Arora DK Microbiol Res; 2001; 156(4):343-51. PubMed ID: 11770852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]