BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19719639)

  • 1. Characteristics of Na-dependent respiratory chain in Vibrio anguillarum, a fish pathogen, in comparison with other marine Vibrios.
    Fujiwara-Nagata E; Kogure K; Kita-Tsukamoto K; Wada M; Eguchi M
    FEMS Microbiol Ecol; 2003 May; 44(2):225-30. PubMed ID: 19719639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition.
    Fujiwara-Nagata E; Eguchi M
    FEMS Microbiol Lett; 2004 May; 234(1):163-7. PubMed ID: 15109735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of NaCl and carbonylcyanide-m-chlorophenylhydrazone on the production of extracellular proteases in a marine Vibrio strain.
    Kim YJ
    J Microbiol; 2004 Jun; 42(2):156-9. PubMed ID: 15357312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of Na+ ions in the respiration, formation of the membrane potential and movement of the alkali-resistant marine bacterium Vibrio alginolyticus].
    Dibrov PA; Kostyrko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biokhimiia; 1987 Jan; 52(1):15-23. PubMed ID: 3814650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific inhibition of chemiluminescent activity by pathogenic vibrios in hemocytes of two marine bivalves: Pecten maximus and Crassostrea gigas.
    Lambert C; Nicolas JL
    J Invertebr Pathol; 1998 Jan; 71(1):53-63. PubMed ID: 9446738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria.
    Kim YJ; Mizushima S; Tokuda H
    J Biochem; 1991 Apr; 109(4):616-21. PubMed ID: 1907969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes encoding the Vibrio harveyi haemolysin (VHH)/thermolabile haemolysin (TLH) are widespread in vibrios.
    Wang SX; Zhang XH; Zhong YB; Sun BG; Chen JX
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):874-81. PubMed ID: 18062266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of rpoS gene decreased resistance to environmental stresses, synthesis of extracellular products and virulence of Vibrio anguillarum.
    Ma L; Chen J; Liu R; Zhang XH; Jiang YA
    FEMS Microbiol Ecol; 2009 Nov; 70(2):130-6. PubMed ID: 19527291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-responsive outer membrane proteins of Vibrio anguillarum serotype O1 as revealed by comparative proteome analysis.
    Kao DY; Cheng YC; Kuo TY; Lin SB; Lin CC; Chow LP; Chen WJ
    J Appl Microbiol; 2009 Jun; 106(6):2079-85. PubMed ID: 19245402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions.
    Tokuda H; Unemoto T
    J Bacteriol; 1983 Nov; 156(2):636-43. PubMed ID: 6313611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH: quinone oxidoreductase as a site of Na+-dependent activation in the respiratory chain of marine Vibrio alginolyticus.
    Unemoto T; Hayashi M
    J Biochem; 1979 Jun; 85(6):1461-7. PubMed ID: 457642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump.
    Tokuda H
    Biochem Biophys Res Commun; 1983 Jul; 114(1):113-8. PubMed ID: 6882417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-mediated catabolite repression and electrochemical potential-dependent production of an extracellular amylase in Vibrio alginolyticus.
    Kim UO; Hahm KS; Park YH; Kim YJ
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):288-92. PubMed ID: 10192907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Na(+)-motive respiratory chain of marine bacteria.
    Tokuda H; Unemoto T
    Microbiol Sci; 1985; 2(3):65-6, 69-71. PubMed ID: 2856376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional differential immune responses of Mytilus galloprovincialis to bacterial challenge.
    Ciacci C; Citterio B; Betti M; Canonico B; Roch P; Canesi L
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Aug; 153(4):365-71. PubMed ID: 19393331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-dependent activation of NADH oxidase in membrane fractions from halophilic Vibrio alginolyticus and V. costicolus.
    Unemoto T; Hayashi M; Hayashi M
    J Biochem; 1977 Nov; 82(5):1389-95. PubMed ID: 591506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bioenergetics of marine bacteria--respiration-coupled Na+ pump].
    Unemoto T
    Yakugaku Zasshi; 2000 Jan; 120(1):16-27. PubMed ID: 10655779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.