These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1013 related articles for article (PubMed ID: 19720506)
1. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM. Kitano K; Inoue Y; Matsuno R; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2009 Nov; 74(1):350-7. PubMed ID: 19720506 [TBL] [Abstract][Full Text] [Related]
2. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439 [TBL] [Abstract][Full Text] [Related]
3. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
4. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M; Takahara A Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448 [TBL] [Abstract][Full Text] [Related]
5. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures. Edmondson S; Nguyen NT; Lewis AL; Armes SP Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474 [TBL] [Abstract][Full Text] [Related]
6. Study viscoelasticity of ultrathin poly(oligo(ethylene glycol) methacrylate) brushes by a quartz crystal microbalance with dissipation. Fu L; Chen X; He J; Xiong C; Ma H Langmuir; 2008 Jun; 24(12):6100-6. PubMed ID: 18481877 [TBL] [Abstract][Full Text] [Related]
7. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Kyomoto M; Moro T; Takatori Y; Kawaguchi H; Nakamura K; Ishihara K Biomaterials; 2010 Feb; 31(6):1017-24. PubMed ID: 19906420 [TBL] [Abstract][Full Text] [Related]
8. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR. Malmström J; Agheli H; Kingshott P; Sutherland DS Langmuir; 2007 Sep; 23(19):9760-8. PubMed ID: 17691829 [TBL] [Abstract][Full Text] [Related]
9. Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Kyomoto M; Moro T; Saiga K; Miyaji F; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K Biomaterials; 2010 Feb; 31(4):658-68. PubMed ID: 19819011 [TBL] [Abstract][Full Text] [Related]
10. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance. Inoue Y; Onodera Y; Ishihara K Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657 [TBL] [Abstract][Full Text] [Related]
11. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes. Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847 [TBL] [Abstract][Full Text] [Related]
12. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Lego B; François M; Skene WG; Giasson S Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467 [TBL] [Abstract][Full Text] [Related]
13. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. Kyomoto M; Moro T; Miyaji F; Hashimoto M; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K J Biomed Mater Res A; 2009 Aug; 90(2):362-71. PubMed ID: 18521890 [TBL] [Abstract][Full Text] [Related]
14. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface. Tanaka M; Mochizuki A J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056 [TBL] [Abstract][Full Text] [Related]
15. Solvent dependent friction force response of polystyrene brushes prepared by surface initiated polymerization. Limpoco FT; Advincula RC; Perry SS Langmuir; 2007 Nov; 23(24):12196-201. PubMed ID: 17949015 [TBL] [Abstract][Full Text] [Related]
16. Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Park J; Kurosawa S; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Apr; 55(2):164-72. PubMed ID: 17207978 [TBL] [Abstract][Full Text] [Related]
17. Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants. Wang N; Trunfio-Sfarghiu AM; Portinha D; Descartes S; Fleury E; Berthier Y; Rieu JP Colloids Surf B Biointerfaces; 2013 Aug; 108():285-94. PubMed ID: 23563296 [TBL] [Abstract][Full Text] [Related]
18. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization. Chen R; Zhu S; Maclaughlin S Langmuir; 2008 Jun; 24(13):6889-96. PubMed ID: 18507417 [TBL] [Abstract][Full Text] [Related]
19. Characterization of patterned poly(methyl methacrylate) brushes under various structures upon solvent immersion. Chen JK; Hsieh CY; Huang CF; Li PM J Colloid Interface Sci; 2009 Oct; 338(2):428-34. PubMed ID: 19592006 [TBL] [Abstract][Full Text] [Related]
20. Direct patterning of intrinsically electron beam sensitive polymer brushes. Rastogi A; Paik MY; Tanaka M; Ober CK ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]