These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19720623)

  • 1. Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis.
    Laver JR; Stevanin TM; Messenger SL; Lunn AD; Lee ME; Moir JW; Poole RK; Read RC
    FASEB J; 2010 Jan; 24(1):286-95. PubMed ID: 19720623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and stability of S-nitrosothiols in RAW 264.7 cells.
    Zhang Y; Hogg N
    Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L467-74. PubMed ID: 14672925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition of
    Stomberski CT; Zhou HL; Wang L; van den Akker F; Stamler JS
    J Biol Chem; 2019 Feb; 294(5):1568-1578. PubMed ID: 30538128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa.
    Stevanin TM; Moir JW; Read RC
    Infect Immun; 2005 Jun; 73(6):3322-9. PubMed ID: 15908358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrosothiols in bacterial pathogens and pathogenesis.
    Laver JR; McLean S; Bowman LA; Harrison LJ; Read RC; Poole RK
    Antioxid Redox Signal; 2013 Jan; 18(3):309-22. PubMed ID: 22768799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress.
    Seth D; Hausladen A; Stamler JS
    Antioxid Redox Signal; 2020 Apr; 32(12):803-816. PubMed ID: 31691575
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms.
    Tunbridge AJ; Stevanin TM; Lee M; Marriott HM; Moir JW; Read RC; Dockrell DH
    Infect Immun; 2006 Jan; 74(1):729-33. PubMed ID: 16369030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codependent and independent effects of nitric oxide-mediated suppression of PhoPQ and Salmonella pathogenicity island 2 on intracellular Salmonella enterica serovar typhimurium survival.
    Bourret TJ; Song M; Vázquez-Torres A
    Infect Immun; 2009 Nov; 77(11):5107-15. PubMed ID: 19737903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNO spectral counting (SNOSC), a label-free proteomic method for quantification of changes in levels of protein S-nitrosation.
    Zhang X; Huang B; Chen C
    Free Radic Res; 2012 Aug; 46(8):1044-50. PubMed ID: 22512350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols.
    Kneeshaw S; Spoel SH
    Methods Mol Biol; 2018; 1747():281-297. PubMed ID: 29600467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and Outcome of Macrophage Interaction Between
    Huang K; Fresno AH; Skov S; Olsen JE
    Front Cell Infect Microbiol; 2019; 9():420. PubMed ID: 31998655
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages.
    Das P; Lahiri A; Lahiri A; Chakravortty D
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2476-2489. PubMed ID: 19520723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric Oxide Disrupts Zinc Homeostasis in Salmonella enterica Serovar Typhimurium.
    Frawley ER; Karlinsey JE; Singhal A; Libby SJ; Doulias PT; Ischiropoulos H; Fang FC
    mBio; 2018 Aug; 9(4):. PubMed ID: 30108168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N(2)O(3) enhances the nitrosative potential of IFNgamma-primed macrophages in response to Salmonella.
    McCollister BD; Myers JT; Jones-Carson J; Husain M; Bourret TJ; Vázquez-Torres A
    Immunobiology; 2007; 212(9-10):759-69. PubMed ID: 18086377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling.
    Stomberski CT; Hess DT; Stamler JS
    Antioxid Redox Signal; 2019 Apr; 30(10):1331-1351. PubMed ID: 29130312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins.
    Zughaier SM; Zimmer SM; Datta A; Carlson RW; Stephens DS
    Infect Immun; 2005 May; 73(5):2940-50. PubMed ID: 15845500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AKR1A1 is a novel mammalian
    Stomberski CT; Anand P; Venetos NM; Hausladen A; Zhou HL; Premont RT; Stamler JS
    J Biol Chem; 2019 Nov; 294(48):18285-18293. PubMed ID: 31649033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans.
    Liu L; Hausladen A; Zeng M; Que L; Heitman J; Stamler JS
    Nature; 2001 Mar; 410(6827):490-4. PubMed ID: 11260719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages.
    Stevanin TM; Poole RK; Demoncheaux EA; Read RC
    Infect Immun; 2002 Aug; 70(8):4399-405. PubMed ID: 12117950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide.
    Bosworth CA; Toledo JC; Zmijewski JW; Li Q; Lancaster JR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4671-6. PubMed ID: 19261856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.