These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1972067)

  • 1. Excitotoxicity of L-dopa and 6-OH-dopa: implications for Parkinson's and Huntington's diseases.
    Olney JW; Zorumski CF; Stewart GR; Price MT; Wang GJ; Labruyere J
    Exp Neurol; 1990 Jun; 108(3):269-72. PubMed ID: 1972067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is GDNF to Parkinson's disease what BDNF is to Huntington's disease?
    Fusco FR; Paldino E
    Neural Regen Res; 2024 May; 19(5):973-974. PubMed ID: 37862194
    [No Abstract]   [Full Text] [Related]  

  • 3. Novel Insights into RAD52's Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies.
    Balboni B; Rinaldi F; Previtali V; Ciamarone A; Girotto S; Cavalli A
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Lethality through the Lens of Medicinal Chemistry.
    Myers SH; Ortega JA; Cavalli A
    J Med Chem; 2020 Dec; 63(23):14151-14183. PubMed ID: 33135887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc.
    Aizenman E; Loring RH; Reynolds IJ; Rosenberg PA
    Front Neurosci; 2020; 14():778. PubMed ID: 32792905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAD52 as a Potential Target for Synthetic Lethality-Based Anticancer Therapies.
    Toma M; Sullivan-Reed K; Śliwiński T; Skorski T
    Cancers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurophysiology of the brain stem in Parkinson's disease.
    Bove C; Travagli RA
    J Neurophysiol; 2019 May; 121(5):1856-1864. PubMed ID: 30917059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology.
    Ozga JE; Povroznik JM; Engler-Chiurazzi EB; Vonder Haar C
    Behav Pharmacol; 2018 Oct; 29(7):617-637. PubMed ID: 30215621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices.
    Barrese V; Taglialatela M; Greenwood IA; Davidson C
    J Cereb Blood Flow Metab; 2015 Oct; 35(10):1593-600. PubMed ID: 25966943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mitocentric view of Parkinson's disease.
    Haelterman NA; Yoon WH; Sandoval H; Jaiswal M; Shulman JM; Bellen HJ
    Annu Rev Neurosci; 2014; 37():137-59. PubMed ID: 24821430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amantadine ameliorates dopamine-releasing deficits and behavioral deficits in rats after fluid percussion injury.
    Huang EY; Tsui PF; Kuo TT; Tsai JJ; Chou YC; Ma HI; Chiang YH; Chen YH
    PLoS One; 2014; 9(1):e86354. PubMed ID: 24497943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additional antiepileptic mechanisms of levetiracetam in lithium-pilocarpine treated rats.
    Al-Shorbagy MY; El Sayeh BM; Abdallah DM
    PLoS One; 2013; 8(10):e76735. PubMed ID: 24098559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lessons from neurolathyrism: a disease of the past & the future of Lathyrus sativus (Khesari dal).
    Singh SS; Rao SL
    Indian J Med Res; 2013; 138(1):32-7. PubMed ID: 24056554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Dopamine in Acute Traumatic Brain Injury.
    Bales JW; Kline AE; Wagner AK; Dixon CE
    Open Drug Discov J; 2010; 2():119-128. PubMed ID: 22308176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease.
    Höhn S; Dallérac G; Faure A; Urbach YK; Nguyen HP; Riess O; von Hörsten S; Le Blanc P; Desvignes N; El Massioui N; Brown BL; Doyère V
    J Neurosci; 2011 Jun; 31(24):8986-97. PubMed ID: 21677182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans.
    Benedetto A; Au C; Avila DS; Milatovic D; Aschner M
    PLoS Genet; 2010 Aug; 6(8):. PubMed ID: 20865164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective neuronal vulnerability to oxidative stress in the brain.
    Wang X; Michaelis EK
    Front Aging Neurosci; 2010; 2():12. PubMed ID: 20552050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis.
    Bales JW; Wagner AK; Kline AE; Dixon CE
    Neurosci Biobehav Rev; 2009 Jul; 33(7):981-1003. PubMed ID: 19580914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking selective vulnerability to cell death mechanisms in Parkinson's disease.
    Dickson DW
    Am J Pathol; 2007 Jan; 170(1):16-9. PubMed ID: 17200178
    [No Abstract]   [Full Text] [Related]  

  • 20. Selective neurotoxins, chemical tools to probe the mind: the first thirty years and beyond.
    Kostrzewa RM
    Neurotox Res; 1999 Sep; 1(1):3-25. PubMed ID: 12835111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.