BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19721183)

  • 1. Finite element modeling of retinal prosthesis mechanics.
    Basinger BC; Rowley AP; Chen K; Humayun MS; Weiland JD
    J Neural Eng; 2009 Oct; 6(5):055006. PubMed ID: 19721183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantation of an inactive epiretinal poly(dimethyl siloxane) electrode array in dogs.
    Güven D; Weiland JD; Maghribi M; Davidson JC; Mahadevappa M; Roizenblatt R; Qiu G; Krulevitz P; Wang X; Labree L; Humayun MS
    Exp Eye Res; 2006 Jan; 82(1):81-90. PubMed ID: 16125701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation.
    Djilas M; Olès C; Lorach H; Bendali A; Dégardin J; Dubus E; Lissorgues-Bazin G; Rousseau L; Benosman R; Ieng SH; Joucla S; Yvert B; Bergonzo P; Sahel J; Picaud S
    J Neural Eng; 2011 Aug; 8(4):046020. PubMed ID: 21701056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.
    Wilke RG; Moghadam GK; Lovell NH; Suaning GJ; Dokos S
    J Neural Eng; 2011 Aug; 8(4):046016. PubMed ID: 21673395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study.
    Opie NL; Burkitt AN; Meffin H; Grayden DB
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):339-45. PubMed ID: 22010144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance-based retinal contact imaging as an aid for the placement of high resolution epiretinal prostheses.
    Johnson L; Scribner D; Skeath P; Klein R; Ilg D; Perkins K; Helfgott M; Sanders R; Panigrahi D
    J Neural Eng; 2007 Mar; 4(1):S17-23. PubMed ID: 17325412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical modeling of self-expandable stent fabricated using braiding technology.
    Kim JH; Kang TJ; Yu WR
    J Biomech; 2008 Nov; 41(15):3202-12. PubMed ID: 18804764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis.
    Qian L; Todo M; Matsushita Y; Koyano K
    Int J Oral Maxillofac Implants; 2009; 24(5):877-86. PubMed ID: 19865628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D finite element analyses of insertion of the Nucleus standard straight and the Contour electrode arrays into the human cochlea.
    Kha HN; Chen BK; Clark GM
    J Biomech; 2007; 40(12):2796-805. PubMed ID: 17408675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics.
    Slomka N; Gefen A
    J Biomech; 2010 Jun; 43(9):1806-16. PubMed ID: 20188374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method and technical equipment for an acute human trial to evaluate retinal implant technology.
    Hornig R; Laube T; Walter P; Velikay-Parel M; Bornfeld N; Feucht M; Akguel H; Rössler G; Alteheld N; Lütke Notarp D; Wyatt J; Richard G
    J Neural Eng; 2005 Mar; 2(1):S129-34. PubMed ID: 15876648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the effects of different materials in a tooth implant-supported fixed prosthesis using finite element method.
    Dargahi J; Najarian S; Talebi M
    Biomed Mater Eng; 2005; 15(4):317-31. PubMed ID: 16010040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects.
    Mahadevappa M; Weiland JD; Yanai D; Fine I; Greenberg RJ; Humayun MS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):201-6. PubMed ID: 16003900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.