These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19721452)

  • 1. The length-tension relationship of human dorsiflexor and plantarflexor muscles after spinal cord injury.
    Pelletier CA; Hicks AL
    Spinal Cord; 2010 Mar; 48(3):202-6. PubMed ID: 19721452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor unit number estimation of the tibialis anterior muscle in spinal cord injury.
    Xiong GX; Zhang JW; Hong Y; Guan Y; Guan H
    Spinal Cord; 2008 Oct; 46(10):696-702. PubMed ID: 18332883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of muscle temperature on the contractile properties of the quadriceps muscle in humans with spinal cord injury.
    Gerrits HL; de Haan A; Hopman MT; van der Woude LH; Sargeant AJ
    Clin Sci (Lond); 2000 Jan; 98(1):31-8. PubMed ID: 10600656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of load during electrical stimulation training in spinal cord injury.
    Crameri RM; Cooper P; Sinclair PJ; Bryant G; Weston A
    Muscle Nerve; 2004 Jan; 29(1):104-11. PubMed ID: 14694505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury.
    Butler JE; Ribot-Ciscar E; Zijdewind I; Thomas CK
    Muscle Nerve; 2004 Apr; 29(4):575-84. PubMed ID: 15052623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface electrical stimulation of skeletal muscle after spinal cord injury.
    Hillegass EA; Dudley GA
    Spinal Cord; 1999 Apr; 37(4):251-7. PubMed ID: 10338344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower extremity skeletal muscle function in persons with incomplete spinal cord injury.
    Jayaraman A; Gregory CM; Bowden M; Stevens JE; Shah P; Behrman AL; Vandenborne K
    Spinal Cord; 2006 Nov; 44(11):680-7. PubMed ID: 16344848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury.
    Knikou M; Conway BA
    Spinal Cord; 2005 Nov; 43(11):640-8. PubMed ID: 15968304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study.
    Duffell LD; Rowlerson AM; Donaldson Nde N; Harridge SD; Newham DJ
    Muscle Nerve; 2010 Nov; 42(5):756-63. PubMed ID: 20976779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length-tension properties of ankle muscles in chronic human spinal cord injury.
    McDonald MF; Kevin Garrison M; Schmit BD
    J Biomech; 2005 Dec; 38(12):2344-53. PubMed ID: 16214482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N; Broton JG; Suys S; Calancie B
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.
    Sayenko DG; Masani K; Milosevic M; Robinson MF; Vette AH; McConville KM; Popovic MR
    Med Eng Phys; 2011 Mar; 33(2):249-55. PubMed ID: 21036093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflex reciprocal facilitation of antagonist muscles in spinal cord injury.
    Xia R; Rymer WZ
    Spinal Cord; 2005 Jan; 43(1):14-21. PubMed ID: 15289809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity.
    Wirth B; van Hedel HJ; Curt A
    J Clin Neurophysiol; 2008 Aug; 25(4):210-7. PubMed ID: 18677185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of muscle afferents to prolonged flexion withdrawal reflexes in human spinal cord injury.
    Hornby TG; Tysseling-Mattiace VM; Benz EN; Schmit BD
    J Neurophysiol; 2004 Dec; 92(6):3375-84. PubMed ID: 15254071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of isometric and load moving length-tension models of two bicompartmental muscles.
    Vance TL; Solomonow M; Baratta R; Zembo M; D'Ambrosia RD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):771-81. PubMed ID: 7927399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.