These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19721548)

  • 1. Spatially resolved soot-absorption measurements in flames using laser vaporizationof particles.
    Dasch CJ
    Opt Lett; 1984 Jun; 9(6):214-6. PubMed ID: 19721548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced incandescence: excitation intensity.
    Vander Wal RL; Jensen KA
    Appl Opt; 1998 Mar; 37(9):1607-16. PubMed ID: 18268755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements.
    Lehre T; Jungfleisch B; Suntz R; Bockhorn H
    Appl Opt; 2003 Apr; 42(12):2021-30. PubMed ID: 12716142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved saturated absorption measurements of OH in methane-air flames.
    Zizak G; Cignoli F; Benecchi S
    Appl Opt; 1987 Oct; 26(19):4293-7. PubMed ID: 20490224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence.
    Will S; Schraml S; Bader K; Leipertz A
    Appl Opt; 1998 Aug; 37(24):5647-58. PubMed ID: 18286051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames.
    De Iuliis S; Cignoli F; Zizak G
    Appl Opt; 2005 Dec; 44(34):7414-23. PubMed ID: 16353814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.
    Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD
    Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional imaging of soot volume fraction in laminar diffusion flames.
    Snelling DR; Thomson KA; Smallwood GJ; Gülder OL
    Appl Opt; 1999 Apr; 38(12):2478-85. PubMed ID: 18319815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D mid-infrared laser-absorption imaging for tomographic reconstruction of temperature and carbon monoxide in laminar flames.
    Tancin RJ; Spearrin RM; Goldenstein CS
    Opt Express; 2019 May; 27(10):14184-14198. PubMed ID: 31163871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced incandescence for soot diagnostics at high pressures.
    Hofmann M; Bessler WG; Schulz C; Jander H
    Appl Opt; 2003 Apr; 42(12):2052-62. PubMed ID: 12716145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser.
    Wen D; Wang Y
    Opt Express; 2020 Dec; 28(25):37879-37902. PubMed ID: 33379613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames.
    Appel J; Bockhorn H; Wulkow M
    Chemosphere; 2001; 42(5-7):635-45. PubMed ID: 11219689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames.
    Meyer TR; Halls BR; Jiang N; Slipchenko MN; Roy S; Gord JR
    Opt Express; 2016 Dec; 24(26):29547-29555. PubMed ID: 28059341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame.
    Witze PO; Hochgreb S; Kayes D; Michelsen HA; Shaddix CR
    Appl Opt; 2001 May; 40(15):2443-52. PubMed ID: 18357253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames.
    Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C
    Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced incandescence for soot particle size measurements in premixed flat flames.
    Axelsson B; Collin R; Bengtsson PE
    Appl Opt; 2000 Jul; 39(21):3683-90. PubMed ID: 18349943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity ringdown and laser-induced incandescence measurements of soot.
    Vander Wal RL; Ticich TM
    Appl Opt; 1999 Mar; 38(9):1444-51. PubMed ID: 18305765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.