These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19721588)

  • 1. Optimum design of 1.55-microm double heterostructures and ridge-waveguide lasers.
    Bowers JE; Wilt DP
    Opt Lett; 1984 Aug; 9(8):330-2. PubMed ID: 19721588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of active region position in Fabry-Perot single transverse mode broad-waveguide InGaAsP/InP lasers.
    Lysevych M; Tan HH; Karouta F; Jagadish C
    Opt Express; 2014 Apr; 22(7):8156-64. PubMed ID: 24718193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser.
    Duan Z; Shi W; Chrostowski L; Huang X; Zhou N; Chai G
    Opt Express; 2010 Jan; 18(2):1501-9. PubMed ID: 20173978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ridge-width dependence of the threshold of long wavelength (λ ≈ 14 µm) Quantum Cascade lasers with sloped and vertical sidewalls.
    Huang X; Chiu Y; Charles WO; Gmachl C
    Opt Express; 2012 Jan; 20(3):2539-47. PubMed ID: 22330491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InP-based quantum cascade lasers monolithically integrated onto silicon.
    Go R; Krysiak H; Fetters M; Figueiredo P; Suttinger M; Fang XM; Eisenbach A; Fastenau JM; Lubyshev D; Liu AWK; Huy NG; Morgan AO; Edwards SA; Furlong MJ; Lyakh A
    Opt Express; 2018 Aug; 26(17):22389-22393. PubMed ID: 30130933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wavelength (lambda approximately 8-11.5 microm) semiconductor lasers with waveguides based on surface plasmons.
    Sirtori C; Gmachl C; Capasso F; Faist J; Sivco DL; Hutchinson AL; Cho AY
    Opt Lett; 1998 Sep; 23(17):1366-8. PubMed ID: 18091787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epitaxial Nd:YLF linear waveguide laser.
    Rogin P; Hulliger J
    Opt Lett; 1997 Nov; 22(22):1701-3. PubMed ID: 18188340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InP photonic wire waveguide using InAlAs oxide cladding layer.
    Takenaka M; Nakano Y
    Opt Express; 2007 Jun; 15(13):8422-7. PubMed ID: 19547173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1.54-microm TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss.
    Amemiya T; Shimizu H; Yokoyama M; Hai PN; Tanaka M; Nakano Y
    Appl Opt; 2007 Aug; 46(23):5784-91. PubMed ID: 17694128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide.
    Bahriz M; Lollia G; Baranov AN; Teissier R
    Opt Express; 2015 Jan; 23(2):1523-8. PubMed ID: 25835909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit.
    Roelkens G; Van Thourhout D; Baets R; Nötzel R; Smit M
    Opt Express; 2006 Sep; 14(18):8154-9. PubMed ID: 19529187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical waveguide structure for an all-optical switch based on intersubband transitions in InGaAs/AlAsSb quantum wells.
    Fedoryshyn Y; Strasser P; Ma P; Robin F; Jäckel H
    Opt Lett; 2007 Sep; 32(18):2680-2. PubMed ID: 17873933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.
    Abdollahinia A; Banyoudeh S; Rippien A; Schnabel F; Eyal O; Cestier I; Kalifa I; Mentovich E; Eisenstein G; Reithmaier JP
    Opt Express; 2018 Mar; 26(5):6056-6066. PubMed ID: 29529801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress.
    Xu DX; Cheben P; Dalacu D; Delâge A; Janz S; Lamontagne B; Picard MJ; Ye WN
    Opt Lett; 2004 Oct; 29(20):2384-6. PubMed ID: 15532275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor lasers with a thin active layer (>0.1 microm for optical communications.
    Chinone N; Nakashima H; Ikushima I; Ito R
    Appl Opt; 1978 Jan; 17(2):311-5. PubMed ID: 20174402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective bandwidth of terahertz antiresonant reflecting pipe waveguide.
    Lai CH; Yeh YS; Yeh CA; Wang YK
    Opt Express; 2018 Mar; 26(5):6456-6465. PubMed ID: 29529838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers.
    van Dalfsen K; Aravazhi S; Geskus D; Wörhoff K; Pollnau M
    Opt Express; 2011 Mar; 19(6):5277-82. PubMed ID: 21445164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fs-laser-written erbium-doped double tungstate waveguide laser.
    Kifle E; Loiko P; Romero C; Vázquez de Aldana JR; Ródenas A; Jambunathan V; Zakharov V; Veniaminov A; Lucianetti A; Mocek T; Aguiló M; Díaz F; Griebner U; Petrov V; Mateos X
    Opt Express; 2018 Nov; 26(23):30826-30836. PubMed ID: 30469975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of the near-field distribution in an X-ray waveguide array.
    Zhong Q; Melchior L; Peng J; Huang Q; Wang Z; Salditt T
    J Appl Crystallogr; 2017 Jun; 50(Pt 3):701-711. PubMed ID: 28656035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-optical tunability of InGaAsP/InP microdisk resonator by infrared light irradiation.
    Beaugeois M; Pinchemel B; Bouazaoui M; Lesecq M; Maricot S; Vilcot JP
    Opt Lett; 2007 Jan; 32(1):35-7. PubMed ID: 17167575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.