These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19721595)

  • 41. Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes.
    Leidinger M; Werner CS; Yoshiki W; Buse K; Breunig I
    Opt Lett; 2016 Dec; 41(23):5474-5477. PubMed ID: 27906216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photorefractive effect in LiNbO3 directional couplers.
    Mueller CT; Garmire E
    Appl Opt; 1984 Dec; 23(23):4348-51. PubMed ID: 18213321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals.
    Pagliusi P; Cipparrone G
    Opt Lett; 2003 Dec; 28(23):2369-71. PubMed ID: 14680185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve.
    Brignon A; Bongrand I; Loiseaux B; Huignard JP
    Opt Lett; 1997 Dec; 22(24):1855-7. PubMed ID: 18188386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strong beam coupling in mesogenic materials with photorefractive Bragg gratings.
    Ono H; Kawatsuki N
    Opt Lett; 1999 Feb; 24(3):130-2. PubMed ID: 18071430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-polarization beam coupling in photorefractive GaAs crystals.
    Cheng LJ; Yeh P
    Opt Lett; 1988 Jan; 13(1):50-2. PubMed ID: 19741977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation.
    Chiou AE; Yeh P
    Opt Lett; 1986 Jul; 11(7):461-3. PubMed ID: 19730664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Matrix-vector multiplication in thin photorefractive GaAs crystals.
    Cheng LJ; Gheen G
    Appl Opt; 1988 Oct; 27(20):4236-8. PubMed ID: 20539549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of subharmonics on two-wave gain in Bi(12)SiO(20) under alternating electric fields.
    Grunnet-Jepsen A; Solymar L; Kwak CH
    Opt Lett; 1994 Sep; 19(17):1299-301. PubMed ID: 19855500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theory of critical enhancement of photorefractive beam coupling.
    Podivilov EV; Sturman BI; Gorkunov MV; Kamenov VP; Ringhofer KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046623. PubMed ID: 12006063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degenerate four-wave mixing in KNbO(3): picosecond and photorefractive nanosecond response.
    Zgonik M; Biaggio I; Bertele U; Günter P
    Opt Lett; 1991 Jul; 16(13):977-9. PubMed ID: 19776848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-noise amplification of ultraweak optical wave fronts in photorefractive Bi(12)SiO(20).
    Rajbenbach H; Delboulbé A; Huignard JP
    Opt Lett; 1991 Oct; 16(19):1481-3. PubMed ID: 19777007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beam coupling and locking of lasers using photorefractive four-wave mixing.
    Sternklar S; Weiss S; Segev M; Fischer B
    Opt Lett; 1986 Aug; 11(8):528-30. PubMed ID: 19738678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measuring photorefractive trap density without the electro-optic effect.
    Pierce RM; Cudney RS; Bacher GD; Feinberg J
    Opt Lett; 1990 Apr; 15(8):414-6. PubMed ID: 19767960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic range compression of images by two-wave mixing in photorefractive materials.
    Snowbell M; Fischer B
    Appl Opt; 1994 Jul; 33(20):4480-6. PubMed ID: 20935814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the dual discrimination ability of the two-port photorefractive joint transform correlator.
    Asimellis G; Cronin-Golomb M; Khoury J; Kane J; Woods C
    Appl Opt; 1995 Dec; 34(35):8154-66. PubMed ID: 21068931
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-gain, low-noise signal beam amplification in photorefractive BaTiO(3).
    Joseph J; Pillai PK; Singh K
    Appl Opt; 1991 Aug; 30(23):3315-8. PubMed ID: 20706395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple method for determining the gain coefficient of a photorefractive polymer film.
    Joo WJ; Kim N
    Opt Lett; 2003 Jul; 28(14):1254-6. PubMed ID: 12885038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.
    Bo F; Zhang G; Xu J
    Opt Express; 2005 Oct; 13(20):8198-203. PubMed ID: 19498849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amplification of optical signals in Bi(12)TiO(20) crystal by photorefractive surface waves.
    Khomenko AV; García-Weidner A; Kamshilin AA
    Opt Lett; 1996 Jul; 21(14):1014-6. PubMed ID: 19876236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.