These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19721686)

  • 21. Optical parameters and space-bandwidth product optimization in digital holographic microscopy.
    Claus D; Iliescu D
    Appl Opt; 2013 Jan; 52(1):A410-22. PubMed ID: 23292419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Off-axis tilt compensation in common-path digital holographic microscopy based on hologram rotation.
    Deng D; Qu W; He W; Wu Y; Liu X; Peng X
    Opt Lett; 2017 Dec; 42(24):5282-5285. PubMed ID: 29240193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging.
    Doblas A; Sánchez-Ortiga E; Martínez-Corral M; Saavedra G; Andrés P; Garcia-Sucerquia J
    Opt Lett; 2013 Apr; 38(8):1352-4. PubMed ID: 23595482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-compensation method for optimizing recording process of holographic optical element lenses with spherical wave reconstruction.
    Yeom J; Son Y; Choi KS
    Opt Express; 2020 Oct; 28(22):33318-33333. PubMed ID: 33114999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy.
    Min J; Yao B; Ketelhut S; Engwer C; Greve B; Kemper B
    Opt Lett; 2017 Jan; 42(2):227-230. PubMed ID: 28081079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digital off-axis holographic interferometry with simulated wavefront.
    Belashov AV; Petrov NV; Semenova IV
    Opt Express; 2014 Nov; 22(23):28363-76. PubMed ID: 25402078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy.
    Trujillo C; Castañeda R; Piedrahita-Quintero P; Garcia-Sucerquia J
    Appl Opt; 2016 Dec; 55(36):10299-10306. PubMed ID: 28059249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction.
    Wang H; Lyu M; Situ G
    Opt Express; 2018 Sep; 26(18):22603-22614. PubMed ID: 30184918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarization holographic recording of vortex diffractive optical elements on azopolymer thin films and 3D analysis via phase-shifting digital holographic microscopy.
    Cazac V; Achimova E; Abashkin V; Prisacar A; Loshmanschii C; Meshalkin A; Egiazarian K
    Opt Express; 2021 Mar; 29(6):9217-9230. PubMed ID: 33820354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly stable digital holographic microscope using Sagnac interferometer.
    Mahajan S; Trivedi V; Vora P; Chhaniwal V; Javidi B; Anand A
    Opt Lett; 2015 Aug; 40(16):3743-6. PubMed ID: 26274649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy.
    Zhang X; Sun J; Zhang Z; Fan Y; Chen Q; Zuo C
    Appl Opt; 2019 Jan; 58(2):389-397. PubMed ID: 30645316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the reference wave in a compact digital holographic camera.
    Park IS; Middleton RJC; Coggrave CR; Ruiz PD; Coupland JM
    Appl Opt; 2018 Jan; 57(1):A235-A241. PubMed ID: 29328151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens.
    Deng D; Peng J; Qu W; Wu Y; Liu X; He W; Peng X
    Appl Opt; 2017 Jul; 56(21):6007-6014. PubMed ID: 29047923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens.
    Lee JS; Kim YK; Won YH
    Opt Express; 2018 Jul; 26(15):19341-19355. PubMed ID: 30114109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digital holographic reconstruction of a local object field using an adjustable magnification.
    Li JC; Peng ZJ; Tankam P; Song QH; Picart P
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1291-6. PubMed ID: 21643415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Driving and analysis of micro-objects by digital holographic microscope in microfluidics.
    Merola F; Miccio L; Paturzo M; Finizio A; Grilli S; Ferraro P
    Opt Lett; 2011 Aug; 36(16):3079-81. PubMed ID: 21847166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy.
    Mikuła M; Kozacki T; Józwik M; Kostencka J
    Appl Opt; 2018 Jan; 57(1):A197-A204. PubMed ID: 29328146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of digital holographic recording and reconstruction using a generalized matrix method.
    Bazow B; Phan T; Nguyen T; Raub C; Nehmetallah G
    Appl Opt; 2021 Feb; 60(4):A21-A37. PubMed ID: 33690351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-interference digital holography with a geometric-phase hologram lens.
    Choi K; Yim J; Yoo S; Min SW
    Opt Lett; 2017 Oct; 42(19):3940-3943. PubMed ID: 28957166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital holographic testing of biconvex lenses.
    Chhaniwal VK; Kihiko JM; Dubey S; Shearon G; Javidi B; Anand A
    Appl Opt; 2013 Dec; 52(36):8714-22. PubMed ID: 24513936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.