These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19722170)

  • 1. Neural decoding of goal locations in spatial navigation in humans with fMRI.
    Rodriguez PF
    Hum Brain Mapp; 2010 Mar; 31(3):391-7. PubMed ID: 19722170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI.
    Rodriguez PF
    Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior hippocampus and goal-directed spatial decision making.
    Viard A; Doeller CF; Hartley T; Bird CM; Burgess N
    J Neurosci; 2011 Mar; 31(12):4613-21. PubMed ID: 21430161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common Neural Representations for Visually Guided Reorientation and Spatial Imagery.
    Vass LK; Epstein RA
    Cereb Cortex; 2017 Feb; 27(2):1457-1471. PubMed ID: 26759482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective representation of navigational goals in the human hippocampus.
    Brown TI; Carr VA; LaRocque KF; Favila SE; Gordon AM; Bowles B; Bailenson JN; Wagner AD
    Science; 2016 Jun; 352(6291):1323-6. PubMed ID: 27284194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
    Sherrill KR; Erdem UM; Ross RS; Brown TI; Hasselmo ME; Stern CE
    J Neurosci; 2013 Dec; 33(49):19304-13. PubMed ID: 24305826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions.
    Jo YS; Park EH; Kim IH; Park SK; Kim H; Kim HT; Choi JS
    J Neurosci; 2007 Dec; 27(49):13567-78. PubMed ID: 18057214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the view expectation during learned maze navigation from human fronto-parietal network.
    Shikauchi Y; Ishii S
    Sci Rep; 2015 Dec; 5():17648. PubMed ID: 26631641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe.
    Marchette SA; Vass LK; Ryan J; Epstein RA
    Nat Neurosci; 2014 Nov; 17(11):1598-606. PubMed ID: 25282616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age differences in the neural systems supporting human allocentric spatial navigation.
    Moffat SD; Elkins W; Resnick SM
    Neurobiol Aging; 2006 Jul; 27(7):965-72. PubMed ID: 15982787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrahippocampal contributions to age differences in human spatial navigation.
    Moffat SD; Kennedy KM; Rodrigue KM; Raz N
    Cereb Cortex; 2007 Jun; 17(6):1274-82. PubMed ID: 16857855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations.
    Evensmoen HR; Lehn H; Xu J; Witter MP; Nadel L; Håberg AK
    J Cogn Neurosci; 2013 Nov; 25(11):1908-25. PubMed ID: 23806136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of activation and de-activation associated with cue-guided spatial navigation: A whole-brain, voxel-based study.
    Salgado-Pineda P; Landin-Romero R; Pomes A; Spanlang B; Sarró S; Salvador R; Slater M; McKenna PJ; Pomarol-Clotet E
    Neuroscience; 2017 Sep; 358():70-78. PubMed ID: 28663090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO
    Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain activation during human navigation: gender-different neural networks as substrate of performance.
    Grön G; Wunderlich AP; Spitzer M; Tomczak R; Riepe MW
    Nat Neurosci; 2000 Apr; 3(4):404-8. PubMed ID: 10725932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans.
    Wolbers T; Wiener JM; Mallot HA; Büchel C
    J Neurosci; 2007 Aug; 27(35):9408-16. PubMed ID: 17728454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation.
    Save E; Poucet B
    Behav Brain Res; 2000 May; 109(2):195-206. PubMed ID: 10762689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding spatial locations from primate lateral prefrontal cortex neural activity during virtual navigation.
    Johnston R; Abbass M; Corrigan B; Gulli R; Martinez-Trujillo J; Sachs A
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36693278
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.