These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19722180)

  • 1. Revisiting the neighbor exclusion model and its applications.
    Rocha MS
    Biopolymers; 2010 Jan; 93(1):1-7. PubMed ID: 19722180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition on the entropic elasticity of DNA induced by intercalating molecules.
    Rocha MS; Ferreira MC; Mesquita ON
    J Chem Phys; 2007 Sep; 127(10):105108. PubMed ID: 17867787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between the change in DNA elasticity on ligand binding and the binding energetics.
    Kostjukov VV; Evstigneev MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031919. PubMed ID: 23030956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of non-cooperative binding parameters of ligand-DNA complex by computer analysis.
    Nandy A; Kumar GS; Maiti M
    Indian J Biochem Biophys; 1993 Aug; 30(4):204-8. PubMed ID: 8276422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative binding isotherms for nearest neighbor interacting ligands on platonic solids: a simple model for viral capture nanotherapy.
    Siegel RA; Linstad JL
    J Phys Chem B; 2010 Nov; 114(44):14071-6. PubMed ID: 20949931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA; Friedman RA; Misra V; Hecht J; Honig B
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence distribution and intercooperativity detection for two ligands simultaneously binding to DNA.
    Torralba AS; Colmenarejo G; Montero F
    Biopolymers; 2001 May; 58(6):562-76. PubMed ID: 11246205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density.
    Nordell P; Lincoln P
    J Am Chem Soc; 2005 Jul; 127(27):9670-1. PubMed ID: 15998055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Theory of cooperative transition of DNA complexes with multimodal ligands].
    Karapetian AT; Terzikian GA; Megrabian NM; Arutiunian SG; Vardevanian PO
    Mol Biol (Mosk); 1995; 29(4):841-7. PubMed ID: 7476951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cooperative effects during the binding of large ligands with DNA. Non-contact interaction between adsorbed ligands].
    Nechipurenko IuD; Zasedatelev AS; Gurskiĭ GV
    Mol Biol (Mosk); 1984; 18(3):798-812. PubMed ID: 6472276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of affinity coelectrophoresis to characterize cooperative, nonspecific nucleic acid binding peptides.
    Nedved ML; Moe GR
    Anal Biochem; 1995 May; 227(1):80-4. PubMed ID: 7668395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies.
    McAfee JG; Edmondson SP; Zegar I; Shriver JW
    Biochemistry; 1996 Apr; 35(13):4034-45. PubMed ID: 8672437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of histone H1 to DNA is described by an allosteric model.
    Mamoon NM; Song Y; Wellman SE
    Biopolymers; 2005 Jan; 77(1):9-17. PubMed ID: 15558656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Distribution functions, describing the binding of extended ligands with DNA molecules. Possible use for cases of DNA condensation].
    Nechipurenko IuD; Vol'f AM; Evdokimov IuM
    Biofizika; 2003; 48(5):802-11. PubMed ID: 14582403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin.
    Keating LR; Szalai VA
    Biochemistry; 2004 Dec; 43(50):15891-900. PubMed ID: 15595844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of nucleosome corkscrew sliding in the presence of synthetic DNA ligands.
    Mohammad-Rafiee F; Kulić IM; Schiessel H
    J Mol Biol; 2004 Nov; 344(1):47-58. PubMed ID: 15504401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA.
    Fedoroff OY; Salazar M; Han H; Chemeris VV; Kerwin SM; Hurley LH
    Biochemistry; 1998 Sep; 37(36):12367-74. PubMed ID: 9730808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative methods of analysis of footprinting diagrams for the complexes formed by a ligand with a DNA fragment of known sequence.
    Nechipurenko YD; Jovanovic B; Riabokon VF; Gursky GV
    Ann N Y Acad Sci; 2005 Jun; 1048():206-14. PubMed ID: 16154934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new biophysics approach using photoacoustic spectroscopy to study the DNA-ethidium bromide interaction.
    Bugs R; Cornélio ML
    Eur Biophys J; 2002 Jun; 31(3):232-40. PubMed ID: 12029336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions.
    Jezewska MJ; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2117-28. PubMed ID: 8652554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.