These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19722198)

  • 1. Electrokinetic trapping using titania nanoporous membranes fabricated using sol-gel chemistry on microfluidic devices.
    Hoeman KW; Lange JJ; Roman GT; Higgins DA; Culbertson CT
    Electrophoresis; 2009 Sep; 30(18):3160-7. PubMed ID: 19722198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration.
    Kim M; Kim T
    Analyst; 2013 Oct; 138(20):6007-15. PubMed ID: 23951567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip.
    Cho YK; Kim S; Lee K; Park C; Lee JG; Ko C
    Electrophoresis; 2009 Sep; 30(18):3153-9. PubMed ID: 19722215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Million-fold preconcentration of proteins and peptides by nanofluidic filter.
    Wang YC; Stevens AL; Han J
    Anal Chem; 2005 Jul; 77(14):4293-9. PubMed ID: 16013838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices.
    Zhang H; Tiggelaar RM; Schlautmann S; Bart J; Gardeniers H
    Electrophoresis; 2016 Feb; 37(3):463-71. PubMed ID: 26331575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating beads and cells in multi-channel microfluidic devices using dielectrophoresis and laminar flow.
    Millet LJ; Park K; Watkins NN; Hsia KJ; Bashir R
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21339720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic ion transport in confined micro-nanochannel.
    Wang J; Liu C; Xu Z
    Electrophoresis; 2016 Mar; 37(5-6):769-74. PubMed ID: 26995194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.
    Long Z; Shen Z; Wu D; Qin J; Lin B
    Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphysics simulation of ion concentration polarization induced by a surface-patterned nanoporous membrane in single channel devices.
    Jia M; Kim T
    Anal Chem; 2014 Oct; 86(20):10365-72. PubMed ID: 25266500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-voltage electrokinetic nanochannel drug delivery system.
    Fine D; Grattoni A; Zabre E; Hussein F; Ferrari M; Liu X
    Lab Chip; 2011 Aug; 11(15):2526-34. PubMed ID: 21677944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions.
    Razunguzwa TT; Lenke J; Timperman AT
    Lab Chip; 2005 Aug; 5(8):851-5. PubMed ID: 16027936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters.
    Sandlin ZD; Shou M; Shackman JG; Kennedy RT
    Anal Chem; 2005 Dec; 77(23):7702-8. PubMed ID: 16316179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traveling-wave electrophoresis for microfluidic separations.
    Edwards BF; Timperman AT; Carroll RL; Jo K; Mease JM; Schiffbauer JE
    Phys Rev Lett; 2009 Feb; 102(7):076103. PubMed ID: 19257694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructuring of titania thin films by a combination of microfluidics and block-copolymer-based sol-gel templating.
    Rawolle M; Ruderer MA; Prams SM; Zhong Q; Magerl D; Perlich J; Roth SV; Lellig P; Gutmann JS; Müller-Buschbaum P
    Small; 2011 Apr; 7(7):884-91. PubMed ID: 21337509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.