BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19722292)

  • 1. Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery.
    Liu Y; Wang S; Hu SJ; Qiu W
    Int J Med Robot; 2009 Dec; 5(4):444-51. PubMed ID: 19722292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-objective optimization of end-to-end sutured anastomosis for robot-assisted surgery.
    Liu Y; Wang S; Hu SJ
    Int J Med Robot; 2010 Sep; 6(3):368-75. PubMed ID: 20652861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suture damage during robot-assisted vascular surgery: is it an issue?
    Diks J; Nio D; Linsen MA; Rauwerda JA; Wisselink W
    Surg Laparosc Endosc Percutan Tech; 2007 Dec; 17(6):524-7. PubMed ID: 18097315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomized controlled trial of barbed polyglyconate versus polyglactin suture for robot-assisted laparoscopic prostatectomy anastomosis: technique and outcomes.
    Williams SB; Alemozaffar M; Lei Y; Hevelone N; Lipsitz SR; Plaster BA; Hu JC
    Eur Urol; 2010 Dec; 58(6):875-81. PubMed ID: 20708331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis.
    Al-Sukhun J; Lindqvist C; Ashammakhi N; Penttilä H
    Br J Oral Maxillofac Surg; 2007 Mar; 45(2):130-7. PubMed ID: 16458394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of a material model and wheel-tissue interaction for simulating wheeled surgical robot mobility.
    Rentschler ME; Reid JD
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):239-48. PubMed ID: 19012064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of fibrin glue in microvascular anastomoses: comparative analysis with the conventional suture technique using a free flap model.
    Cho AB; Júnior RM
    Microsurgery; 2008; 28(5):367-74. PubMed ID: 18561266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel knot-tying approach for minimally invasive surgical robot systems.
    Wang S; Wang H; Yue L
    Int J Med Robot; 2008 Sep; 4(3):268-76. PubMed ID: 18777516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental comparison of the stapled intestinal anastomotic techniques.
    Kanemitsu K; Kawasaki K; Goto T; Fujino Y; Kamigaki T; Kuroda D; Kuroda Y
    Surg Technol Int; 2009 Apr; 18():98-102. PubMed ID: 19579195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2011 May; 22(3):883-7. PubMed ID: 21558923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prostheto-prosthetic and aorto-prosthetic anastomosis using stents, threads, clips and staples. In vitro comparative study].
    Garitey V; Rieu R; Alimi YS
    J Mal Vasc; 2003 Oct; 28(4):173-7. PubMed ID: 14618105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified running vesicourethral anastomosis after robotically assisted laparoscopic radical prostatectomy: use of solitary Lapra-Ty to secure posterior approximation.
    Ball AJ; Bordeau KP; Davis JW; Given RW; Lynch DF; Fabrizio MD
    Urology; 2005 Jul; 66(1):16-8. PubMed ID: 15992902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Overview of the vascular interventional surgery robot].
    Li S; Shen J; Yan Y; Chen D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Mar; 37(2):119-22. PubMed ID: 23777068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted laparoscopic intestinal anastomosis.
    Ruurda JP; Broeders IA
    Surg Endosc; 2003 Feb; 17(2):236-41. PubMed ID: 12399841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.