These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19722487)

  • 1. Electrocatalytic activity of nitrogen-doped carbon nanotube cups.
    Tang Y; Allen BL; Kauffman DR; Star A
    J Am Chem Soc; 2009 Sep; 131(37):13200-1. PubMed ID: 19722487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.
    Deng S; Jian G; Lei J; Hu Z; Ju H
    Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules.
    Shanmugam S; Osaka T
    Chem Commun (Camb); 2011 Apr; 47(15):4463-5. PubMed ID: 21387058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.
    Gong K; Du F; Xia Z; Durstock M; Dai L
    Science; 2009 Feb; 323(5915):760-4. PubMed ID: 19197058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.
    Yang Z; Yao Z; Li G; Fang G; Nie H; Liu Z; Zhou X; Chen X; Huang S
    ACS Nano; 2012 Jan; 6(1):205-11. PubMed ID: 22201338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation.
    Pan D; Chen J; Tao W; Nie L; Yao S
    Langmuir; 2006 Jun; 22(13):5872-6. PubMed ID: 16768522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts.
    Arechederra RL; Artyushkova K; Atanassov P; Minteer SD
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3295-302. PubMed ID: 21043456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes.
    Shobha Jeykumari DR; Sriman Narayanan S
    Biosens Bioelectron; 2008 Apr; 23(9):1404-11. PubMed ID: 18294834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.
    Lin Y; Cui X; Yen C; Wai CM
    J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups.
    Allen BL; Keddie MB; Star A
    Nanoscale; 2010 Jul; 2(7):1105-8. PubMed ID: 20644782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose.
    Wu X; Zhao B; Wu P; Zhang H; Cai C
    J Phys Chem B; 2009 Oct; 113(40):13365-73. PubMed ID: 19746958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.
    Dong H; Zhao Y; Tang Y; Burkert SC; Star A
    ACS Appl Mater Interfaces; 2015 May; 7(20):10734-41. PubMed ID: 25946723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
    Girishkumar G; Rettker M; Underhile R; Binz D; Vinodgopal K; McGinn P; Kamat P
    Langmuir; 2005 Aug; 21(18):8487-94. PubMed ID: 16114961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction.
    Vijayaraghavan G; Stevenson KJ
    Langmuir; 2007 May; 23(10):5279-82. PubMed ID: 17428074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.