These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Manesh KM; Kim HT; Santhosh P; Gopalan AI; Lee KP Biosens Bioelectron; 2008 Jan; 23(6):771-9. PubMed ID: 17905578 [TBL] [Abstract][Full Text] [Related]
43. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes. Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200 [TBL] [Abstract][Full Text] [Related]
44. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Yemini M; Reches M; Gazit E; Rishpon J Anal Chem; 2005 Aug; 77(16):5155-9. PubMed ID: 16097753 [TBL] [Abstract][Full Text] [Related]
45. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts. Sun S; Zhang G; Geng D; Chen Y; Banis MN; Li R; Cai M; Sun X Chemistry; 2010 Jan; 16(3):829-35. PubMed ID: 20024993 [TBL] [Abstract][Full Text] [Related]
46. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au). Fernández JL; Walsh DA; Bard AJ J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486 [TBL] [Abstract][Full Text] [Related]
47. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. Chen J; Wang M; Liu B; Fan Z; Cui K; Kuang Y J Phys Chem B; 2006 Jun; 110(24):11775-9. PubMed ID: 16800477 [TBL] [Abstract][Full Text] [Related]
48. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. Wang S; Yu D; Dai L J Am Chem Soc; 2011 Apr; 133(14):5182-5. PubMed ID: 21413707 [TBL] [Abstract][Full Text] [Related]
49. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. Kang Q; Yang L; Cai Q Bioelectrochemistry; 2008 Nov; 74(1):62-5. PubMed ID: 18614406 [TBL] [Abstract][Full Text] [Related]
50. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Liu R; Liu H; Li Y; Yi Y; Shang X; Zhang S; Yu X; Zhang S; Cao H; Zhang G Nanoscale; 2014 Oct; 6(19):11336-43. PubMed ID: 25141067 [TBL] [Abstract][Full Text] [Related]
51. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications. Yan YM; Yehezkeli O; Willner I Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376 [TBL] [Abstract][Full Text] [Related]
52. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. Li W; Wang X; Chen Z; Waje M; Yan Y J Phys Chem B; 2006 Aug; 110(31):15353-8. PubMed ID: 16884255 [TBL] [Abstract][Full Text] [Related]
53. Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Gong K; Zhang M; Yan Y; Su L; Mao L; Xiong S; Chen Y Anal Chem; 2004 Nov; 76(21):6500-5. PubMed ID: 15516147 [TBL] [Abstract][Full Text] [Related]
54. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. He M; Zhou S; Zhang J; Liu Z; Robinson C J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108 [TBL] [Abstract][Full Text] [Related]
55. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Wang J; Musameh M Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343 [TBL] [Abstract][Full Text] [Related]
56. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Chu X; Duan D; Shen G; Yu R Talanta; 2007 Mar; 71(5):2040-7. PubMed ID: 19071561 [TBL] [Abstract][Full Text] [Related]
57. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells. Lin Y; Cui X; Yen CH; Wai CM Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828 [TBL] [Abstract][Full Text] [Related]
58. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. Peng Z; Yang H J Am Chem Soc; 2009 Jun; 131(22):7542-3. PubMed ID: 19438286 [TBL] [Abstract][Full Text] [Related]
59. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related]
60. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups. Allen BL; Kichambare PD; Star A ACS Nano; 2008 Sep; 2(9):1914-20. PubMed ID: 19206432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]