These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 19722495)

  • 1. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper.
    Ellerbee AK; Phillips ST; Siegel AC; Mirica KA; Martinez AW; Striehl P; Jain N; Prentiss M; Whitesides GM
    Anal Chem; 2009 Oct; 81(20):8447-52. PubMed ID: 19722495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk.
    Steigert J; Brenner T; Grumann M; Riegger L; Lutz S; Zengerle R; Ducrée J
    Biomed Microdevices; 2007 Oct; 9(5):675-9. PubMed ID: 17505885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostics for the developing world: microfluidic paper-based analytical devices.
    Martinez AW; Phillips ST; Whitesides GM; Carrilho E
    Anal Chem; 2010 Jan; 82(1):3-10. PubMed ID: 20000334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-based microfluidic devices by plasma treatment.
    Li X; Tian J; Nguyen T; Shen W
    Anal Chem; 2008 Dec; 80(23):9131-4. PubMed ID: 19551982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.
    Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK
    Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative point-of-care (POC) assays using measurements of time as the readout: a new type of readout for mHealth.
    Lewis GG; Phillips ST
    Methods Mol Biol; 2015; 1256():213-29. PubMed ID: 25626542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional paper microfluidic devices assembled using the principles of origami.
    Liu H; Crooks RM
    J Am Chem Soc; 2011 Nov; 133(44):17564-6. PubMed ID: 22004329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluidic timers for time-dependent, point-of-care assays on paper.
    Noh H; Phillips ST
    Anal Chem; 2010 Oct; 82(19):8071-8. PubMed ID: 20809563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
    Rezk AR; Qi A; Friend JR; Li WH; Yeo LY
    Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.
    Li B; Fu L; Zhang W; Feng W; Chen L
    Electrophoresis; 2014 Apr; 35(8):1152-9. PubMed ID: 24375226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration.
    Wang W; Wu WY; Wang W; Zhu JJ
    J Chromatogr A; 2010 Jun; 1217(24):3896-9. PubMed ID: 20444459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based microfluidic point-of-care diagnostic devices.
    Yetisen AK; Akram MS; Lowe CR
    Lab Chip; 2013 Jun; 13(12):2210-51. PubMed ID: 23652632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-Based Microfluidic Analytical Device Patterned by Label Printer for Point-of-Care Blood Glucose and Hematocrit Detection Using 3D-Printed Smartphone Cassette.
    Cai ZX; Jiang MZ; Chuang YJ; Kuo JN
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thread as a matrix for biomedical assays.
    Reches M; Mirica KA; Dasgupta R; Dickey MD; Butte MJ; Whitesides GM
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1722-8. PubMed ID: 20496913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.