BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19722591)

  • 41. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region.
    Wang XZ; Wong WY; Cheung KY; Fung MK; Djurisić AB; Chan WK
    Dalton Trans; 2008 Oct; (40):5484-94. PubMed ID: 19082032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds.
    Choubrac L; Lafond A; Guillot-Deudon C; Moëlo Y; Jobic S
    Inorg Chem; 2012 Mar; 51(6):3346-8. PubMed ID: 22393915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binary Cu
    Yarur Villanueva F; Green PB; Qiu C; Ullah SR; Buenviaje K; Howe JY; Majewski MB; Wilson MWB
    ACS Nano; 2021 Nov; 15(11):18085-18099. PubMed ID: 34705409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution-processed Cu
    Yan R; Kang L; Sun Y; Zhang J
    RSC Adv; 2018 Mar; 8(21):11469-11477. PubMed ID: 35542788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions.
    Larramona G; Bourdais S; Jacob A; Choné C; Muto T; Cuccaro Y; Delatouche B; Moisan C; Péré D; Dennler G
    J Phys Chem Lett; 2014 Nov; 5(21):3763-7. PubMed ID: 26278747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Air-stable all-inorganic nanocrystal solar cells processed from solution.
    Gur I; Fromer NA; Geier ML; Alivisatos AP
    Science; 2005 Oct; 310(5747):462-5. PubMed ID: 16239470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aqueous-based Binary Sulfide Nanoparticle Inks for Cu
    Wang H; Yasin A; Quitoriano NJ; Demopoulos GP
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31561636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. "Green" Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu
    Stroyuk O; Raevskaya A; Selyshchev O; Dzhagan V; Gaponik N; Zahn DRT; Eychmüller A
    Sci Rep; 2018 Sep; 8(1):13677. PubMed ID: 30209288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu₂ZnSnS₄ Films.
    Guan Z; Luo W; Xu Y; Tao Q; Wen X; Zou Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5432-8. PubMed ID: 26863181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2011 Oct; 133(39):15272-5. PubMed ID: 21882872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study on the Optimization of Cu-Zn-Sn-O to Prepare Cu
    Li Q; Hu J; Cui Y; Wang J; Du J; Wang M; Hao Y; Shen T; Duan L; Wang S; Sun K
    Front Chem; 2021; 9():675642. PubMed ID: 34124003
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks.
    Wang W; Han SY; Sung SJ; Kim DH; Chang CH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11154-9. PubMed ID: 22782084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can Cu
    Zhang H; Zhou C; Zeng H; Deng L; Shi Z
    J Hazard Mater; 2020 Aug; 395():122613. PubMed ID: 32330779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers.
    Zaberca O; Oftinger F; Chane-Ching JY; Datas L; Lafond A; Puech P; Balocchi A; Lagarde D; Marie X
    Nanotechnology; 2012 May; 23(18):185402. PubMed ID: 22513652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition.
    Pan D; An L; Sun Z; Hou W; Yang Y; Yang Z; Lu Y
    J Am Chem Soc; 2008 Apr; 130(17):5620-1. PubMed ID: 18396869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of CZTS Nanoparticles for Low-Cost Solar Cells.
    Kim D; Kim M; Shim J; Kim D; Choi W; Park YS; Choi Y; Lee J
    J Nanosci Nanotechnol; 2016 May; 16(5):5082-6. PubMed ID: 27483876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and Solar Cell Properties of a Ag-Containing Cu
    Nguyen TH; Kawaguchi T; Chantana J; Minemoto T; Harada T; Nakanishi S; Ikeda S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5455-5463. PubMed ID: 29368914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance Enhancement in Powder-Fabricated Cu
    Park J; Nam H; Song BG; Burak D; Jang HS; Lee SY; Cho SH; Park JK
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic interplay of alkali cations and a natural organic binder in the microstructural evolution of Cu
    Mutiari A; Bansal N; Hamid R; Artner M; Mayer V; Roth J; Weil M; Wibowo RA
    RSC Adv; 2019 Sep; 9(49):28670-28677. PubMed ID: 35529662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rounded Cu2ZnSnS4 nanosheet networks as a cost-effective counter electrode for high-efficiency dye-sensitized solar cells.
    Chen SL; Tao J; Tao HJ; Shen YZ; Xu AC; Cao FX; Jiang JJ; Wang T; Pan L
    Dalton Trans; 2016 Mar; 45(11):4513-7. PubMed ID: 26898462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.