These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19722640)

  • 1. Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures.
    Acharya S; Sarma DD; Golan Y; Sengupta S; Ariga K
    J Am Chem Soc; 2009 Aug; 131(32):11282-3. PubMed ID: 19722640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
    Yu H; Li J; Loomis RA; Wang LW; Buhro WE
    Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.
    Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE
    J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero.
    Tae EL; Lee KE; Jeong JS; Yoon KB
    J Am Chem Soc; 2008 May; 130(20):6534-43. PubMed ID: 18419121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and optoelectronic properties of organic one-dimensional nanostructures.
    Zhao YS; Fu H; Peng A; Ma Y; Liao Q; Yao J
    Acc Chem Res; 2010 Mar; 43(3):409-18. PubMed ID: 19954174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods.
    Wang F; Buhro WE
    J Am Chem Soc; 2007 Nov; 129(46):14381-7. PubMed ID: 17967017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do coupling exciton and oscillation of electron-hole pair exist in neutral and charged pi-dimeric quinquethiophenes?
    Sun M; Liu L; Ding Y; Xu H
    J Chem Phys; 2007 Aug; 127(8):084706. PubMed ID: 17764283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of confinement effects in ZnO quantum dots.
    Haranath D; Sahai S; Joshi AG; Gupta BK; Shanker V
    Nanotechnology; 2009 Oct; 20(42):425701. PubMed ID: 19779241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Luminescent WS
    Ghorai A; Bayan S; Gogurla N; Midya A; Ray SK
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):558-565. PubMed ID: 27957847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Confinement-Tunable Ultrafast Charge Transfer in a PbS Quantum Dots/WSe
    Zhang C; Lian L; Yang Z; Zhang J; Zhu H
    J Phys Chem Lett; 2019 Dec; 10(24):7665-7671. PubMed ID: 31769296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.
    Xu X; Zhuang J; Wang X
    J Am Chem Soc; 2008 Sep; 130(37):12527-35. PubMed ID: 18715007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy of shallow InAs/InP quantum wire nanostructures.
    Mazur YI; Dorogan VG; Bierwagen O; Tarasov GG; DeCuir EA; Noda S; Zhuchenko ZY; Manasreh MO; Masselink WT; Salamo GJ
    Nanotechnology; 2009 Feb; 20(6):065401. PubMed ID: 19417384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensionality dependence of optical properties and quantum confinement effects of hydrogenated silicon nanostructures.
    Ng MF; Zhang RQ
    J Phys Chem B; 2006 Nov; 110(43):21528-35. PubMed ID: 17064103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition.
    Pradhan D; Leung KT
    Langmuir; 2008 Sep; 24(17):9707-16. PubMed ID: 18652422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption of semiconducting and metallic nanospheres with the confined electron-phonon coupling.
    Lee JD
    J Chem Phys; 2006 May; 124(19):194706. PubMed ID: 16729833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-field mobility in an electrostatically confined 2D rectangular nanowire: effect of density of states and phonon confinement.
    Surapaneni S; Jha J; Pendem V; Yadav YK; Ganguly S; Saha D
    Nanotechnology; 2021 Aug; 32(45):. PubMed ID: 34343974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of carrier multiplication in semiconductor nanocrystals.
    McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI
    Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional electron-hole liquid in single Si quantum wells with large electronic and dielectric confinement.
    Pauc N; Calvo V; Eymery J; Fournel F; Magnea N
    Phys Rev Lett; 2004 Jun; 92(23):236802. PubMed ID: 15245183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loosening quantum confinement: observation of real conductivity caused by hole polarons in semiconductor nanocrystals smaller than the Bohr radius.
    Ulbricht R; Pijpers JJ; Groeneveld E; Koole R; Donega Cde M; Vanmaekelbergh D; Delerue C; Allan G; Bonn M
    Nano Lett; 2012 Sep; 12(9):4937-42. PubMed ID: 22881597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.