BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

793 related articles for article (PubMed ID: 19723202)

  • 21. Subcritical solvent extraction of procyanidins from dried red grape pomace.
    Monrad JK; Howard LR; King JW; Srinivas K; Mauromoustakos A
    J Agric Food Chem; 2010 Apr; 58(7):4014-21. PubMed ID: 20020688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of health-relevant flavonoids in commonly consumed cranberry products.
    Grace MH; Massey AR; Mbeunkui F; Yousef GG; Lila MA
    J Food Sci; 2012 Aug; 77(8):H176-83. PubMed ID: 22747948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot).
    Tseng A; Zhao Y
    J Food Sci; 2012 Sep; 77(9):H192-201. PubMed ID: 22908851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grape seed pomace as a valuable source of antioxidant fibers.
    Costa GN; Tonon RV; Mellinger-Silva C; Galdeano MC; Iacomini M; Santiago MC; Almeida EL; Freitas SP
    J Sci Food Agric; 2019 Aug; 99(10):4593-4601. PubMed ID: 30891761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).
    de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E
    J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphenolic composition and antioxidant capacity of extruded cranberry pomace.
    White BL; Howard LR; Prior RL
    J Agric Food Chem; 2010 Apr; 58(7):4037-42. PubMed ID: 20020690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace.
    Anari Z; Mai C; Sengupta A; Howard L; Brownmiller C; Wickramasinghe SR
    J Food Sci; 2019 Aug; 84(8):2199-2208. PubMed ID: 31313316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.
    De Taeye C; Cibaka ML; Jerkovic V; Collin S
    J Agric Food Chem; 2014 Sep; 62(36):9002-16. PubMed ID: 25167469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids.
    Ashraf-Khorassani M; Taylor LT
    J Agric Food Chem; 2004 May; 52(9):2440-4. PubMed ID: 15113138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace.
    Zhao X; Zhang SS; Zhang XK; He F; Duan CQ
    Food Chem; 2020 Apr; 310():125830. PubMed ID: 31784072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating.
    Mishra DK; Dolan KD; Yang L
    J Food Sci; 2008 Jan; 73(1):E9-15. PubMed ID: 18211351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques.
    Oliveira J; Alhinho da Silva M; Teixeira N; De Freitas V; Salas E
    J Agric Food Chem; 2015 Sep; 63(35):7636-44. PubMed ID: 25912410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid preparation of procyanidins B2 and C1 from Granny Smith apples by using low pressure column chromatography and identification of their oligomeric procyanidins.
    Xiao JS; Liu L; Wu H; Xie BJ; Yang EN; Sun ZD
    J Agric Food Chem; 2008 Mar; 56(6):2096-101. PubMed ID: 18298060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of phenolic composition of Noble muscadine (Vitis rotundifolia) by HPLC-MS and the relationship to its antioxidant capacity.
    You Q; Chen F; Wang X; Sharp JL; You Y
    J Food Sci; 2012 Oct; 77(10):C1115-23. PubMed ID: 22924759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry.
    Prior RL; Lazarus SA; Cao G; Muccitelli H; Hammerstone JF
    J Agric Food Chem; 2001 Mar; 49(3):1270-6. PubMed ID: 11312849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Obtaining Multiple Coproducts from Red Grape Pomace via Anthocyanin Extraction and Biogas Production.
    Allison BJ; Simmons CW
    J Agric Food Chem; 2018 Aug; 66(30):8045-8053. PubMed ID: 29969898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative analysis of polymeric procyanidins (Tannins) from grape (Vitis vinifera) seeds by reverse phase high-performance liquid chromatography.
    Peng Z; Hayasaka Y; Iland PG; Sefton M; Høj P; Waters EJ
    J Agric Food Chem; 2001 Jan; 49(1):26-31. PubMed ID: 11170555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of pectic polysaccharides from grape skins on salivary protein - procyanidin interactions.
    Brandão E; Fernandes A; Guerreiro C; Coimbra MA; Mateus N; de Freitas V; Soares S
    Carbohydr Polym; 2020 May; 236():116044. PubMed ID: 32172858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New approach for the synthesis and isolation of dimeric procyanidins.
    Köhler N; Wray V; Winterhalter P
    J Agric Food Chem; 2008 Jul; 56(13):5374-85. PubMed ID: 18540617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.