BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 19723440)

  • 1. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels.
    Saik JE; Gould DJ; Watkins EM; Dickinson ME; West JL
    Acta Biomater; 2011 Jan; 7(1):133-43. PubMed ID: 20801242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
    Seeto WJ; Tian Y; Lipke EA
    Acta Biomater; 2013 Sep; 9(9):8279-89. PubMed ID: 23770139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses.
    Leslie-Barbick JE; Shen C; Chen C; West JL
    Tissue Eng Part A; 2011 Jan; 17(1-2):221-9. PubMed ID: 20712418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide.
    Leslie-Barbick JE; Saik JE; Gould DJ; Dickinson ME; West JL
    Biomaterials; 2011 Sep; 32(25):5782-9. PubMed ID: 21612821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels.
    Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D
    Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic hydrogels with VEGF induce angiogenic processes in both hUVEC and hMEC.
    Porter AM; Klinge CM; Gobin AS
    Biomacromolecules; 2011 Jan; 12(1):242-6. PubMed ID: 21128597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.
    Moon JJ; Hahn MS; Kim I; Nsiah BA; West JL
    Tissue Eng Part A; 2009 Mar; 15(3):579-85. PubMed ID: 18803481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis.
    Saik JE; Gould DJ; Keswani AH; Dickinson ME; West JL
    Biomacromolecules; 2011 Jul; 12(7):2715-22. PubMed ID: 21639150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis.
    Zieris A; Prokoph S; Levental KR; Welzel PB; Grimmer M; Freudenberg U; Werner C
    Biomaterials; 2010 Nov; 31(31):7985-94. PubMed ID: 20674970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation.
    Balaoing LR; Post AD; Lin AY; Tseng H; Moake JL; Grande-Allen KJ
    PLoS One; 2015; 10(6):e0130749. PubMed ID: 26090873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation.
    Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J
    Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically Orthogonal Protein Ligation Domains for Independent Control of Hydrogel Modification with Adhesive Ligands and Growth Factors.
    Hammer JA; West JL
    Bioconjug Chem; 2020 Nov; 31(11):2504-2512. PubMed ID: 33089994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.