BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 19723440)

  • 21. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration.
    Lee SH; Miller JS; Moon JJ; West JL
    Biotechnol Prog; 2005; 21(6):1736-41. PubMed ID: 16321059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of bioactive photocrosslinkable fibrous hydrogels.
    Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL
    J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels.
    Gonzalez AL; Gobin AS; West JL; McIntire LV; Smith CW
    Tissue Eng; 2004; 10(11-12):1775-86. PubMed ID: 15684686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization.
    Turturro MV; Papavasiliou G
    J Biomater Sci Polym Ed; 2012; 23(7):917-39. PubMed ID: 21477459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation.
    Zhu J; He P; Lin L; Jones DR; Marchant RE
    Biomacromolecules; 2012 Mar; 13(3):706-13. PubMed ID: 22296572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.
    García JR; Clark AY; García AJ
    J Biomed Mater Res A; 2016 Apr; 104(4):889-900. PubMed ID: 26662727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis.
    Ali S; Saik JE; Gould DJ; Dickinson ME; West JL
    Biores Open Access; 2013 Aug; 2(4):241-9. PubMed ID: 23914330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption.
    Hsu CW; Olabisi RM; Olmsted-Davis EA; Davis AR; West JL
    J Biomed Mater Res A; 2011 Jul; 98(1):53-62. PubMed ID: 21523904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues.
    Chiu LL; Radisic M
    Biomaterials; 2010 Jan; 31(2):226-41. PubMed ID: 19800684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering.
    Chiu LL; Weisel RD; Li RK; Radisic M
    J Tissue Eng Regen Med; 2011 Jan; 5(1):69-84. PubMed ID: 20717888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces.
    Hu X; Neoh KG; Zhang J; Kang ET; Wang W
    Biomaterials; 2012 Nov; 33(32):8082-93. PubMed ID: 22884814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.
    Zhu J; Tang C; Kottke-Marchant K; Marchant RE
    Bioconjug Chem; 2009 Feb; 20(2):333-9. PubMed ID: 19191566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering.
    Mann BK; Gobin AS; Tsai AT; Schmedlen RH; West JL
    Biomaterials; 2001 Nov; 22(22):3045-51. PubMed ID: 11575479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing.
    Seliktar D; Zisch AH; Lutolf MP; Wrana JL; Hubbell JA
    J Biomed Mater Res A; 2004 Mar; 68(4):704-16. PubMed ID: 14986325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.