These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19723571)

  • 1. Endocytic mechanisms and toxicity of a functionalized fullerene in human cells.
    Zhang LW; Yang J; Barron AR; Monteiro-Riviere NA
    Toxicol Lett; 2009 Dec; 191(2-3):149-57. PubMed ID: 19723571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes.
    Yang J; Wang K; Driver J; Yang J; Barron AR
    Org Biomol Chem; 2007 Jan; 5(2):260-6. PubMed ID: 17205169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin.
    Rouse JG; Yang J; Ryman-Rasmussen JP; Barron AR; Monteiro-Riviere NA
    Nano Lett; 2007 Jan; 7(1):155-60. PubMed ID: 17212456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis.
    Yang J; Alemany LB; Driver J; Hartgerink JD; Barron AR
    Chemistry; 2007; 13(9):2530-45. PubMed ID: 17236230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells.
    Seib FP; Jones AT; Duncan R
    J Control Release; 2007 Feb; 117(3):291-300. PubMed ID: 17210200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes.
    Rouse JG; Yang J; Barron AR; Monteiro-Riviere NA
    Toxicol In Vitro; 2006 Dec; 20(8):1313-20. PubMed ID: 16759832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of FITC-doped silica nanoparticles and study of their cellular uptake in the presence of lectins.
    Kotsuchibashi Y; Zhang Y; Ahmed M; Ebara M; Aoyagi T; Narain R
    J Biomed Mater Res A; 2013 Jul; 101(7):2090-6. PubMed ID: 23349105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line.
    Monteiro-Riviere NA; Inman AO; Zhang LW
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):222-35. PubMed ID: 18983864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics.
    Santos SM; Dinis AM; Peixoto F; Ferreira L; Jurado AS; Videira RA
    Toxicol Sci; 2014 Mar; 138(1):117-29. PubMed ID: 24361870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.
    Jiang G; Yin F; Duan J; Li G
    J Mater Sci Mater Med; 2015 Jan; 26(1):5348. PubMed ID: 25578702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A water-soluble fullerene vesicle alleviates angiotensin II-induced oxidative stress in human umbilical venous endothelial cells.
    Maeda R; Noiri E; Isobe H; Homma T; Tanaka T; Negishi K; Doi K; Fujita T; Nakamura E
    Hypertens Res; 2008 Jan; 31(1):141-51. PubMed ID: 18360029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells.
    Sun Q; Teong B; Chen IF; Chang SJ; Gao J; Kuo SM
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):455-62. PubMed ID: 24039154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer.
    Mao Z; Ma L; Yan J; Yan M; Gao C; Shen J
    Biomaterials; 2007 Oct; 28(30):4488-500. PubMed ID: 17640726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of quantum dot nanoparticle cellular uptake.
    Zhang LW; Monteiro-Riviere NA
    Toxicol Sci; 2009 Jul; 110(1):138-55. PubMed ID: 19414515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model.
    Tang H; Jiang Z; He H; Li X; Hu H; Zhang N; Dai Y; Zhou Z
    Int J Nanomedicine; 2018; 13():4073-4082. PubMed ID: 30034233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FITC-poly-D-lysine conjugates as fluorescent probes to quantify hapten-specific macrophage receptor binding and uptake kinetics.
    Cherukuri A; Frye J; French T; Durack G; Voss EW
    Cytometry; 1998 Feb; 31(2):110-24. PubMed ID: 9482280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of adenosine receptors by [60]fullerene hydrosoluble derivative in SK-N-MC cells.
    Giust D; León D; Ballesteros-Yañez I; Da Ros T; Albasanz JL; Martín M
    ACS Chem Neurosci; 2011 Jul; 2(7):363-9. PubMed ID: 22816023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress.
    Trpkovic A; Todorovic-Markovic B; Trajkovic V
    Arch Toxicol; 2012 Dec; 86(12):1809-27. PubMed ID: 22562437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative effects of sulfhydryl compounds on target organellae, nuclei and mitochondria, of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes.
    Nakagawa Y; Inomata A; Ogata A; Nakae D
    J Appl Toxicol; 2015 Dec; 35(12):1465-72. PubMed ID: 25809591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells.
    Saathoff JG; Inman AO; Xia XR; Riviere JE; Monteiro-Riviere NA
    Toxicol In Vitro; 2011 Dec; 25(8):2105-12. PubMed ID: 21964474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.