These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19723829)

  • 1. Mercury recovery from cold cathode fluorescent lamps using thermal desorption technology.
    Chang TC; Chen CM; Lee YF; You SJ
    Waste Manag Res; 2010 May; 28(5):455-60. PubMed ID: 19723829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treating high-mercury-containing lamps using full-scale thermal desorption technology.
    Chang TC; You SJ; Yu BS; Chen CM; Chiu YC
    J Hazard Mater; 2009 Mar; 162(2-3):967-72. PubMed ID: 18603361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stocks and environmental release of mercury in backlight cold cathode fluorescence lamps.
    Zhuang X; Wang Y; Yuan W; Bai J; Wang J
    Waste Manag Res; 2018 Sep; 36(9):849-856. PubMed ID: 30014768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps.
    Durão WA; de Castro CA; Windmöller CC
    Waste Manag; 2008 Nov; 28(11):2311-9. PubMed ID: 18096377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of mercury amount in the components of spent U-type lamp.
    Rhee SW
    Environ Technol; 2017 May; 38(10):1305-1312. PubMed ID: 27608735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
    Rey-Raap N; Gallardo A
    Waste Manag; 2012 May; 32(5):944-8. PubMed ID: 22206740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
    Tan Q; Li J
    Waste Manag Res; 2016 Jan; 34(1):67-74. PubMed ID: 26628052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.
    Lee WR; Eom Y; Lee TG
    Waste Manag; 2017 Feb; 60():546-551. PubMed ID: 28024896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury speciation in fluorescent lamps by thermal release analysis.
    Raposo C; Windmöller CC; Durão WA
    Waste Manag; 2003; 23(10):879-86. PubMed ID: 14614922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable remediation of mercury contaminated soils by thermal desorption.
    Sierra MJ; Millán R; López FA; Alguacil FJ; Cañadas I
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4898-907. PubMed ID: 26545893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of mercury bonded in residual glass from spent fluorescent lamps.
    Rey-Raap N; Gallardo A
    J Environ Manage; 2013 Jan; 115():175-8. PubMed ID: 23262405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.
    Ozgur C; Coskun S; Akcil A; Beyhan M; Üncü IS; Civelekoglu G
    Waste Manag; 2016 Nov; 57():215-219. PubMed ID: 27040091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development Path of the Lighting Industry in Mainland China: Execution of Energy Conservation and Management on Mercury Emission.
    Li Z; Jia P; Zhao F; Kang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30558339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.
    Al-Ghouti MA; Abuqaoud RH; Abu-Dieyeh MH
    Waste Manag; 2016 Mar; 49():238-244. PubMed ID: 26725036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.