BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19724526)

  • 1. Critically coupled surface phonon-polariton excitation in silicon carbide.
    Neuner B; Korobkin D; Fietz C; Carole D; Ferro G; Shvets G
    Opt Lett; 2009 Sep; 34(17):2667-9. PubMed ID: 19724526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared dipole antenna enhanced by surface phonon polaritons.
    Kim HC; Cheng X
    Opt Lett; 2010 Nov; 35(22):3748-50. PubMed ID: 21081984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons.
    Gubbin CR; Martini F; Politi A; Maier SA; De Liberato S
    Phys Rev Lett; 2016 Jun; 116(24):246402. PubMed ID: 27367398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Absorption with Graphene-Coated Silicon Carbide Nanowires for Mid-Infrared Nanophotonics.
    Rufangura P; Khodasevych I; Agrawal A; Bosi M; Folland TG; Caldwell JD; Iacopi F
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures.
    Ellis CT; Tischler JG; Glembocki OJ; Bezares FJ; Giles AJ; Kasica R; Shirey L; Owrutsky JC; Chigrin DN; Caldwell JD
    Sci Rep; 2016 Sep; 6():32959. PubMed ID: 27622525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid longitudinal-transverse phonon polaritons.
    Gubbin CR; Berte R; Meeker MA; Giles AJ; Ellis CT; Tischler JG; Wheeler VD; Maier SA; Caldwell JD; De Liberato S
    Nat Commun; 2019 Apr; 10(1):1682. PubMed ID: 30975986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.
    Li D; Lawandy NM; Zia R
    Opt Express; 2013 Sep; 21(18):20900-10. PubMed ID: 24103963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grating-coupled Otto configuration for hybridized surface phonon polariton excitation for local refractive index sensitivity enhancement.
    Pechprasarn S; Learkthanakhachon S; Zheng G; Shen H; Lei DY; Somekh MG
    Opt Express; 2016 Aug; 24(17):19517-30. PubMed ID: 27557229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.
    Dubrovkin AM; Qiang B; Krishnamoorthy HNS; Zheludev NI; Wang QJ
    Nat Commun; 2018 May; 9(1):1762. PubMed ID: 29720587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation.
    Ocelic N; Hillenbrand R
    Nat Mater; 2004 Sep; 3(9):606-9. PubMed ID: 15286756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons.
    Rivera N; Rosolen G; Joannopoulos JD; Kaminer I; Soljačić M
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13607-13612. PubMed ID: 29233942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient zero-order description of the fine structure in the infrared reflection band of cubic ionic crystals and the phonon-polariton dispersion using Lorentz gauge.
    Meskers SCJ
    J Chem Phys; 2018 Mar; 148(11):114703. PubMed ID: 29566514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons.
    Zhao ZW; Wu HW; Zhou Y
    Opt Express; 2016 Oct; 24(20):22930-22942. PubMed ID: 27828360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional surface phonon polaritons in boron nitride nanotubes.
    Xu XG; Ghamsari BG; Jiang JH; Gilburd L; Andreev GO; Zhi C; Bando Y; Golberg D; Berini P; Walker GC
    Nat Commun; 2014 Aug; 5():4782. PubMed ID: 25154586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material.
    Sumikura H; Wang T; Li P; Michel AU; Heßler A; Jung L; Lewin M; Wuttig M; Chigrin DN; Taubner T
    Nano Lett; 2019 Apr; 19(4):2549-2554. PubMed ID: 30920839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prism coupling to terahertz surface plasmon polaritons.
    O'Hara J; Averitt R; Taylor A
    Opt Express; 2005 Aug; 13(16):6117-26. PubMed ID: 19498622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.