These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19724606)

  • 1. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders.
    Arslanagić S; Breinbjerg O
    Opt Express; 2009 Aug; 17(18):16059-72. PubMed ID: 19724606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations.
    Arslanagić S; Breinbjerg O
    Materials (Basel); 2010 Dec; 4(1):117-130. PubMed ID: 28879980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifted resonances in coated metamaterial cylinders: enhanced backscattering and near-field effects.
    Qiu CW; Zouhdi S; Geng YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046604. PubMed ID: 18517747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-tunable microbolometers with metamaterial absorbers.
    Maier T; Brückl H
    Opt Lett; 2009 Oct; 34(19):3012-4. PubMed ID: 19794799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-harmonic generation from magnetic metamaterials.
    Klein MW; Enkrich C; Wegener M; Linden S
    Science; 2006 Jul; 313(5786):502-4. PubMed ID: 16873661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature control of Fano resonances and transmission in superconducting metamaterials.
    Fedotov VA; Tsiatmas A; Shi JH; Buckingham R; de Groot P; Chen Y; Wang S; Zheludev NI
    Opt Express; 2010 Apr; 18(9):9015-9. PubMed ID: 20588747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers.
    Benincasa DS; Barber PW; Zhang JZ; Hsieh WF; Chang RK
    Appl Opt; 1987 Apr; 26(7):1348-56. PubMed ID: 20454323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the dispersion of metamaterial surface for broadband infrared absorption.
    Feng Q; Pu M; Hu C; Luo X
    Opt Lett; 2012 Jun; 37(11):2133-5. PubMed ID: 22660145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave Analysis of Scattered and Absorbed Powers of Semiconductor and Metamaterial Cylinder Structures.
    Bučinskas J; Pomarnacki R; Plonis D; Paulikas Š; Tušinskis G; Nickelson L
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30650596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D metamaterials with hexagonal structure: spatial resonances and near field imaging.
    Zhuromskyy O; Shamonina E; Solymar L
    Opt Express; 2005 Nov; 13(23):9299-309. PubMed ID: 19503131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders.
    Irci E; Ertürk VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056603. PubMed ID: 18233778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holey-structured tungsten metamaterials for broadband ultrasonic sub-wavelength imaging in water.
    Astolfi L; Hutchins DA; Thomas PJ; Watson RL; Nie L; Freear S; Clare AT; Ricci M; Laureti S
    J Acoust Soc Am; 2021 Jul; 150(1):74. PubMed ID: 34340517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of polarizabilities of cylinders with cylinder-slab resonances.
    Xiao M; Huang X; Liu H; Chan CT
    Sci Rep; 2015 Feb; 5():8189. PubMed ID: 25641391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the role of the dielectric loss in metamaterial absorber.
    Hu C; Li X; Feng Q; Chen X; Luo X
    Opt Express; 2010 Mar; 18(7):6598-603. PubMed ID: 20389683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-wavelength energy trapping of elastic waves in a metamaterial.
    Colombi A; Roux P; Rupin M
    J Acoust Soc Am; 2014 Aug; 136(2):EL192-8. PubMed ID: 25096146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized modes in random arrays of cylinders.
    Vanneste C; Sebbah P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026612. PubMed ID: 15783446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superscattering from cylindrical hyperbolic metamaterials in the visible region.
    Kumar R; Kajikawa K
    Opt Express; 2020 Jan; 28(2):1507-1517. PubMed ID: 32121859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fault detection in dielectric grid scatterers.
    Brancaccio A; Solimene R
    Opt Express; 2015 Apr; 23(7):8200-15. PubMed ID: 25968659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory metamaterials.
    Driscoll T; Kim HT; Chae BG; Kim BJ; Lee YW; Jokerst NM; Palit S; Smith DR; Di Ventra M; Basov DN
    Science; 2009 Sep; 325(5947):1518-21. PubMed ID: 19696311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization dependent enhanced optical transmission through a sub-wavelength polygonal aperture surrounded by polygonal grooves.
    Nazari T; Khazaeinezhad R; Kassani SH; Jung W; Shin I; Kang D; Oh K
    Opt Express; 2014 Nov; 22(22):27476-88. PubMed ID: 25401895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.