These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 19724612)
1. Analysis and design of transmittance for an antireflective surface microstructure. Jing X; Ma J; Liu S; Jin Y; He H; Shao J; Fan Z Opt Express; 2009 Aug; 17(18):16119-34. PubMed ID: 19724612 [TBL] [Abstract][Full Text] [Related]
2. Transmittance analysis of diffraction phase grating. Jing X; Jin Y Appl Opt; 2011 Mar; 50(9):C11-8. PubMed ID: 21460923 [TBL] [Abstract][Full Text] [Related]
3. Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence. Ruan D; Zhu L; Jing X; Tian Y; Wang L; Jin S Appl Opt; 2014 Apr; 53(11):2357-65. PubMed ID: 24787405 [TBL] [Abstract][Full Text] [Related]
4. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays. Jing X; Shao J; Zhang J; Jin Y; He H; Fan Z Opt Express; 2009 Dec; 17(26):24137-52. PubMed ID: 20052125 [TBL] [Abstract][Full Text] [Related]
5. Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating. Jing X; Zhang J; Tian Y; Jin S Appl Opt; 2014 Jan; 53(2):259-68. PubMed ID: 24514059 [TBL] [Abstract][Full Text] [Related]
7. Limits of scalar diffraction theory for conducting gratings. Gremaux DA; Gallagher NC Appl Opt; 1993 Apr; 32(11):1948-53. PubMed ID: 20820328 [TBL] [Abstract][Full Text] [Related]
8. Design of highly efficient transmission gratings with deep etched triangular grooves. Jing X; Zhang J; Jin S; Liang P; Tian Y Appl Opt; 2012 Nov; 51(33):7920-33. PubMed ID: 23207302 [TBL] [Abstract][Full Text] [Related]
9. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Leem JW; Yeh Y; Yu JS Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164 [TBL] [Abstract][Full Text] [Related]
10. Design of highly transparent glasses with broadband antireflective subwavelength structures. Song YM; Choi HJ; Yu JS; Lee YT Opt Express; 2010 Jun; 18(12):13063-71. PubMed ID: 20588436 [TBL] [Abstract][Full Text] [Related]
11. Antireflective property of thin film a-Si solar cell structures with graded refractive index structure. Jang SJ; Song YM; Yeo CI; Park CY; Yu JS; Lee YT Opt Express; 2011 Mar; 19 Suppl 2():A108-17. PubMed ID: 21445212 [TBL] [Abstract][Full Text] [Related]
12. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes. Yang C; Yang H; Li C; Xue C Appl Opt; 2019 Apr; 58(10):2589-2595. PubMed ID: 31045058 [TBL] [Abstract][Full Text] [Related]
13. Solving conical diffraction grating problems with integral equations. Goray LI; Schmidt G J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):585-97. PubMed ID: 20208951 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of the accuracy of the simplified modal method for designing a subwavelength triangular grooves grating. Jing X; Jin S; Zhang J; Tian Y; Liang P; Shu H; Wang L; Dong Q Opt Lett; 2013 Jan; 38(1):10-2. PubMed ID: 23282821 [TBL] [Abstract][Full Text] [Related]
15. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes. Tanaka S; Fujihara S Langmuir; 2011 Mar; 27(6):2929-35. PubMed ID: 21338102 [TBL] [Abstract][Full Text] [Related]