These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19724807)

  • 21. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature.
    Han SS; William A G
    J Am Chem Soc; 2007 Jul; 129(27):8422-3. PubMed ID: 17569539
    [No Abstract]   [Full Text] [Related]  

  • 24. Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite.
    Poon SW; Pan JS; Tok ES
    Phys Chem Chem Phys; 2006 Jul; 8(28):3326-34. PubMed ID: 16835681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method.
    Zhu ZH; Lu GQ
    Langmuir; 2004 Nov; 20(24):10751-5. PubMed ID: 15544412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monte Carlo molecular simulation of the hydration of K-montmorillonite at 353 K and 625 bar.
    Chávez Mde L; de Pablo L; de Pablo JJ
    Langmuir; 2004 Nov; 20(24):10764-70. PubMed ID: 15544414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks.
    Jung DH; Kim D; Lee TB; Choi SB; Yoon JH; Kim J; Choi K; Choi SH
    J Phys Chem B; 2006 Nov; 110(46):22987-90. PubMed ID: 17107133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.
    Roussel T; Bichara C; Gubbins KE; Pellenq RJ
    J Chem Phys; 2009 May; 130(17):174717. PubMed ID: 19425808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study.
    Brown CM; Liu Y; Yildirim T; Peterson VK; Kepert CJ
    Nanotechnology; 2009 May; 20(20):204025. PubMed ID: 19420673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FTIR spectroscopic and computational studies on hydrogen adsorption on the zeolite Li-FER.
    Nachtigall P; Garrone E; Palomino GT; Delgado MR; Nachtigallová D; Areán CO
    Phys Chem Chem Phys; 2006 May; 8(19):2286-92. PubMed ID: 16688311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.
    Li Y; Zhou Z; Shen P; Zhang SB; Chen Z
    Nanotechnology; 2009 May; 20(21):215701. PubMed ID: 19423940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage.
    Lueking AD; Pan L; Narayanan DL; Clifford CE
    J Phys Chem B; 2005 Jul; 109(26):12710-7. PubMed ID: 16852574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites.
    Baykasoglu C; Mert H; Deniz CU
    J Mol Graph Model; 2021 Jul; 106():107909. PubMed ID: 33848950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exceptionally high H2 storage by a metal-organic polyhedral framework.
    Yan Y; Lin X; Yang S; Blake AJ; Dailly A; Champness NR; Hubberstey P; Schröder M
    Chem Commun (Camb); 2009 Mar; (9):1025-7. PubMed ID: 19225624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.
    Tan X; Kou L; Tahini HA; Smith SC
    ChemSusChem; 2015 Nov; 8(21):3626-31. PubMed ID: 26384030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C28 fullerites-structure, electronic properties and intercalates.
    Enyashin A; Gemming S; Heine T; Seifert G; Zhechkov L
    Phys Chem Chem Phys; 2006 Jul; 8(28):3320-5. PubMed ID: 16835680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.