BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

789 related articles for article (PubMed ID: 19724824)

  • 1. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China.
    Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L
    J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system.
    Tighe M; Ashley P; Lockwood P; Wilson S
    Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China.
    Li L; Liu H; Li H
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28061-28074. PubMed ID: 30066079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.
    Fu Z; Wu F; Amarasiriwardena D; Mo C; Liu B; Zhu J; Deng Q; Liao H
    Sci Total Environ; 2010 Jul; 408(16):3403-10. PubMed ID: 20452645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP; Parry D; Noller B
    Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China.
    Wei C; Deng Q; Wu F; Fu Z; Xu L
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination.
    Cidu R; Biddau R; Dore E; Vacca A; Marini L
    Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.
    Fu Z; Wu F; Mo C; Deng Q; Meng W; Giesy JP
    Sci Total Environ; 2016 Jan; 539():97-104. PubMed ID: 26356182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthropogenic impacts on the biogeochemistry and cycling of antimony.
    Shotyk W; Krachler M; Chen B
    Met Ions Biol Syst; 2005; 44():171-203. PubMed ID: 15971668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A; Alonso-Rojo P; Santos-Francés F
    Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas.
    Baeza M; Ren J; Krishnamurthy S; Vaughan TC
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.
    Kim CS; Stack DH; Rytuba JJ
    J Environ Monit; 2012 Jul; 14(7):1798-813. PubMed ID: 22718027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area.
    Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J
    Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania.
    Gault AG; Cooke DR; Townsend AT; Charnock JM; Polya DA
    Sci Total Environ; 2005 Jun; 345(1-3):219-28. PubMed ID: 15919541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of arsenic and antimony contents in tissues and organs of brown trout caught from the river Presa polluted by ancient mining practices and from the river Bravona in Corsica (France): a survey study.
    Foata J; Quilichini Y; Torres J; Pereira E; Spella MM; Mattei J; Marchand B
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):581-9. PubMed ID: 19253009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.
    Filella M; Philippo S; Belzile N; Chen Y; Quentel F
    Sci Total Environ; 2009 Dec; 407(24):6205-16. PubMed ID: 19775729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-rehabilitation environmental hazard of Cu, Zn, As and Pb at the derelict Conrad Mine, eastern Australia.
    Gore DB; Preston NJ; Fryirs KA
    Environ Pollut; 2007 Jul; 148(2):491-500. PubMed ID: 17275155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of As and Sb.
    Mbadugha L; Cowper D; Dossanov S; Paton GI
    Environ Geochem Health; 2020 Nov; 42(11):3911-3924. PubMed ID: 32638254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.