These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 19725550)

  • 21. Addition/oxidative rearrangement of 3-furfurals and 3-furyl imines: new approaches to substituted furans and pyrroles.
    Kelly AR; Kerrigan MH; Walsh PJ
    J Am Chem Soc; 2008 Mar; 130(12):4097-104. PubMed ID: 18314989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mn(III)-catalyzed synthesis of pyrroles from vinyl azides and 1,3-dicarbonyl compounds.
    Wang YF; Toh KK; Chiba S; Narasaka K
    Org Lett; 2008 Nov; 10(21):5019-22. PubMed ID: 18842053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct synthesis of bipyrroles using phenyliodine bis(trifluoroacetate) with bromotrimethylsilane.
    Dohi T; Morimoto K; Maruyama A; Kita Y
    Org Lett; 2006 May; 8(10):2007-10. PubMed ID: 16671768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-phase synthesis of 3-aminopyrrole-2,5-dicarboxylate analogues.
    Brouillette Y; Rombouts FJ; Lubell WD
    J Comb Chem; 2006; 8(1):117-26. PubMed ID: 16398562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of 2,4-unsubstituted quinoline-3-carboxylic acid ethyl esters from arylmethyl azides via a domino process.
    Tummatorn J; Thongsornkleeb C; Ruchirawat S; Gettongsong T
    Org Biomol Chem; 2013 Mar; 11(9):1463-7. PubMed ID: 23361444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel tandem sequence to pyrrole syntheses by 5-endo-dig cyclization of 1,3-enynes with amines.
    Bharathiraja G; Sakthivel S; Sengoden M; Punniyamurthy T
    Org Lett; 2013 Oct; 15(19):4996-9. PubMed ID: 24032607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct catalytic asymmetric Mannich-type reactions of N-(2-hydroxyacetyl)pyrrole as an ester-equivalent donor.
    Harada S; Handa S; Matsunaga S; Shibasaki M
    Angew Chem Int Ed Engl; 2005 Jul; 44(28):4365-8. PubMed ID: 15940733
    [No Abstract]   [Full Text] [Related]  

  • 28. Selective Mono-reduction of Pyrrole-2,5 and 2,4-Dicarboxylates.
    Yasui E; Tsuda J; Ohnuki S; Nagumo S
    Chem Pharm Bull (Tokyo); 2016; 64(9):1262-7. PubMed ID: 27581630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial reduction of pyrroles: application to natural product synthesis.
    Donohoe TJ; Thomas RE
    Chem Rec; 2007; 7(3):180-90. PubMed ID: 17549705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition metal-catalyzed synthesis of pyrroles from dienyl azides.
    Dong H; Shen M; Redford JE; Stokes BJ; Pumphrey AL; Driver TG
    Org Lett; 2007 Dec; 9(25):5191-4. PubMed ID: 17994755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LIC-KOR-promoted synthesis of alkoxydienyl amines: an entry to 2,3,4,5-tetrasubstituted pyrroles.
    Blangetti M; Deagostino A; Prandi C; Tabasso S; Venturello P
    Org Lett; 2009 Sep; 11(17):3914-7. PubMed ID: 19655734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient PIFA-mediated synthesis of a directly linked zinc chlorin dimer via regioselective oxidative coupling.
    Ouyang Q; Yan KQ; Zhu YZ; Zhang CH; Liu JZ; Chen C; Zheng JY
    Org Lett; 2012 Jun; 14(11):2746-9. PubMed ID: 22583057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Total syntheses of (-)-hanishin, (-)-longamide B, and (-)-longamide B methyl ester via a novel preparation of N-substituted pyrrole-2-carboxylates [corrected].
    Cheng G; Wang X; Bao H; Cheng C; Liu N; Hu Y
    Org Lett; 2012 Feb; 14(4):1062-5. PubMed ID: 22315925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric annulation toward pyrrolopiperazinones: concise enantioselective syntheses of pyrrole alkaloid natural products.
    Trost BM; Dong G
    Org Lett; 2007 Jun; 9(12):2357-9. PubMed ID: 17497869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of directly linked diazine isosteres of pyrrole-polyamide that photochemically cleave DNA.
    Ong CW; Yang YT; Liu MC; Fox KR; Liu PH; Tung HW
    Org Biomol Chem; 2012 Feb; 10(5):1040-6. PubMed ID: 22146828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via Ti(II)/Ti(IV) redox catalysis.
    Gilbert ZW; Hue RJ; Tonks IA
    Nat Chem; 2016 Jan; 8(1):63-8. PubMed ID: 26673265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Total synthesis of dimeric pyrrole-imidazole alkaloids: sceptrin, ageliferin, nagelamide e, oxysceptrin, nakamuric acid, and the axinellamine carbon skeleton.
    O'Malley DP; Li K; Maue M; Zografos AL; Baran PS
    J Am Chem Soc; 2007 Apr; 129(15):4762-75. PubMed ID: 17375928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extending Pummerer reaction chemistry: (+/-)-dibromoagelaspongin synthesis and related studies.
    Feldman KS; Fodor MD
    J Org Chem; 2009 May; 74(9):3449-61. PubMed ID: 19331352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent-dependent oxidations of 5- and 6-azaindoles to trioxopyrrolopyridines and functionalised azaindoles.
    Mahiout Z; Lomberget T; Goncalves S; Barret R
    Org Biomol Chem; 2008 Apr; 6(8):1364-76. PubMed ID: 18385843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereoretentive halogenations and azidations with titanium(IV) enabled by chelating leaving groups.
    Lepore SD; Mondal D; Li SY; Bhunia AK
    Angew Chem Int Ed Engl; 2008; 47(39):7511-4. PubMed ID: 18712737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.