These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 19725601)
21. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. Wolf A; Reiher M J Chem Phys; 2006 Feb; 124(6):64102. PubMed ID: 16483191 [TBL] [Abstract][Full Text] [Related]
22. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator. Maeda H; Ootani Y; Fukui H J Chem Phys; 2007 May; 126(17):174102. PubMed ID: 17492852 [TBL] [Abstract][Full Text] [Related]
23. Four-component relativistic theory for NMR parameters: unified formulation and numerical assessment of different approaches. Cheng L; Xiao Y; Liu W J Chem Phys; 2009 Apr; 130(14):144102. PubMed ID: 19368424 [TBL] [Abstract][Full Text] [Related]
24. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. Cheng L; Gauss J; Stanton JF J Chem Phys; 2013 Aug; 139(5):054105. PubMed ID: 23927241 [TBL] [Abstract][Full Text] [Related]
25. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties. Roura PG; Melo JI; Ruiz de Azúa MC; Giribet CG J Chem Phys; 2006 Aug; 125(6):64107. PubMed ID: 16942273 [TBL] [Abstract][Full Text] [Related]
26. Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties. Konecny L; Kadek M; Komorovsky S; Malkina OL; Ruud K; Repisky M J Chem Theory Comput; 2016 Dec; 12(12):5823-5833. PubMed ID: 27792323 [TBL] [Abstract][Full Text] [Related]
27. Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. Wolf A; Reiher M J Chem Phys; 2006 Feb; 124(6):64103. PubMed ID: 16483192 [TBL] [Abstract][Full Text] [Related]
28. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. Reiher M; Wolf A J Chem Phys; 2004 Dec; 121(22):10945-56. PubMed ID: 15634044 [TBL] [Abstract][Full Text] [Related]
29. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study. Bast R; Schwerdtfeger P; Saue T J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295 [TBL] [Abstract][Full Text] [Related]
30. Relativistic corrections to electrical first-order properties using direct perturbation theory. Stopkowicz S; Gauss J J Chem Phys; 2008 Oct; 129(16):164119. PubMed ID: 19045259 [TBL] [Abstract][Full Text] [Related]
31. Recovering four-component solutions by the inverse transformation of the infinite-order two-component wave functions. Barysz M; Mentel Ł; Leszczyński J J Chem Phys; 2009 Apr; 130(16):164114. PubMed ID: 19405568 [TBL] [Abstract][Full Text] [Related]
32. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation. Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871 [TBL] [Abstract][Full Text] [Related]
33. On the spin separation of algebraic two-component relativistic Hamiltonians: molecular properties. Li Z; Xiao Y; Liu W J Chem Phys; 2014 Aug; 141(5):054111. PubMed ID: 25106574 [TBL] [Abstract][Full Text] [Related]
34. Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications. Zou W; Guo G; Suo B; Liu W J Chem Theory Comput; 2020 Mar; 16(3):1541-1554. PubMed ID: 31986032 [TBL] [Abstract][Full Text] [Related]
39. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation. Dawes R; Carrington T J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846 [TBL] [Abstract][Full Text] [Related]
40. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant. Hayami M; Seino J; Nakai H J Chem Phys; 2018 Mar; 148(11):114109. PubMed ID: 29566518 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]