These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19725705)

  • 1. Discussion: "On the Thermodynamical Admissibility of the Triphasic Theory of Charged Hydrated Tissues" (Huyghe, J. M., Wilson, W., and Malakpoor, K., ASME J. Biomech. Eng., 2009, 131, p. 044504).
    Mow VC; Michael Lai W; Setton LA; Gu W; Yao H; Wan LQ; Lu XL
    J Biomech Eng; 2009 Sep; 131(9):095501. PubMed ID: 19725705
    [No Abstract]   [Full Text] [Related]  

  • 2. On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues.
    Huyghe JM; Wilson W; Malakpoor K
    J Biomech Eng; 2009 Apr; 131(4):044504. PubMed ID: 19275446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to discussion: "On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues" (Mow, V. C., Lai, W. M., Setton, L. A., Gu, W., Yao, H., and Lu, X. L., 2009, ASME J. Biomech. Eng., 131, p. 095501).
    Huyghe JM; Wilson W; Malakpoor K
    J Biomech Eng; 2010 Jun; 132(6):065501. PubMed ID: 20887040
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment.
    Korhonen RK; Jurvelin JS
    Med Eng Phys; 2010 Mar; 32(2):155-60. PubMed ID: 19955010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage.
    Ateshian GA; Chahine NO; Basalo IM; Hung CT
    J Biomech; 2004 Mar; 37(3):391-400. PubMed ID: 14757459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen R; Huiskes R
    Med Eng Phys; 2005 Dec; 27(10):810-26. PubMed ID: 16287601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of articular cartilage and determination of material properties.
    Lu XL; Mow VC
    Med Sci Sports Exerc; 2008 Feb; 40(2):193-9. PubMed ID: 18202585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach.
    Wang CC; Guo XE; Sun D; Mow VC; Ateshian GA; Hung CT
    Biorheology; 2002; 39(1-2):11-25. PubMed ID: 12082263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bimodular theory for finite deformations: Comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage.
    Klisch SM
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):90-101. PubMed ID: 16598492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies.
    Mow VC; Guo XE
    Annu Rev Biomed Eng; 2002; 4():175-209. PubMed ID: 12117756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage stress-relaxation proceeds slower at higher compressive strains.
    June RK; Ly S; Fyhrie DP
    Arch Biochem Biophys; 2009 Mar; 483(1):75-80. PubMed ID: 19111671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation.
    Lu XL; Miller C; Chen FH; Guo XE; Mow VC
    J Biomech; 2007; 40(11):2434-41. PubMed ID: 17222852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of finite element codes for the solution of biphasic poroelastic problems.
    van der Voet A
    Proc Inst Mech Eng H; 1997; 211(2):209-11. PubMed ID: 9184461
    [No Abstract]   [Full Text] [Related]  

  • 17. A numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.
    Haider MA; Schugart RC
    J Biomech; 2006; 39(1):177-83. PubMed ID: 16271602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of fatigue in articular cartilage [proceedings].
    Jenkins EA; Weightman B
    J Physiol; 1978 May; 278():34P. PubMed ID: 671310
    [No Abstract]   [Full Text] [Related]  

  • 20. The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate.
    Cao Y; Ma D; Raabe D
    Acta Biomater; 2009 Jan; 5(1):240-8. PubMed ID: 18722168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.