These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19725715)

  • 1. Corneal primary aberrations compensation by oblique light incidence.
    Espinosa J; Mas D; Kasprzak HT
    J Biomed Opt; 2009; 14(4):044003. PubMed ID: 19725715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.
    Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I
    Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of compensation of aberrations in the human eye.
    Tabernero J; Benito A; Alcón E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3274-83. PubMed ID: 17912320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
    Kelly JE; Mihashi T; Howland HC
    J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
    Liu T; Thibos LN
    Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the compensation of horizontal coma aberrations in young human eyes.
    Lu F; Wu J; Shen Y; Qu J; Wang Q; Xu C; Chen S; Zhou X; He JC
    Ophthalmic Physiol Opt; 2008 May; 28(3):277-82. PubMed ID: 18426428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Distribution and compensation mechanism of aberrations between anterior and posterior surface of the cornea in myopia and myopic astigmatism eyes].
    Li XJ; Wang Y; Wu YN; Wu WJ; Yu CJ; Xu LL
    Zhonghua Yan Ke Za Zhi; 2016 Nov; 52(11):840-849. PubMed ID: 27852401
    [No Abstract]   [Full Text] [Related]  

  • 8. Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.
    Atchison DA; Suheimat M; Mathur A; Lister LJ; Rozema J
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5263-5270. PubMed ID: 27701637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of internal refraction with the optical path difference scan.
    Muftuoglu O; Erdem U
    Ophthalmology; 2008 Jan; 115(1):57-66. PubMed ID: 18166405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the human lens gradient-index profile in the compensation of third-order ocular aberrations.
    Díaz JA; Fernández-Dorado J; Sorroche F
    J Biomed Opt; 2012 Jul; 17(7):075003. PubMed ID: 22894475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling human eye aberrations and their compensation for high-resolution retinal imaging.
    Zhu L; Bartsch DU; Freeman WR; Sun PC; Fainman Y
    Optom Vis Sci; 1998 Nov; 75(11):827-39. PubMed ID: 9848838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher order aberrations across the horizontal visual field.
    Atchison DA
    J Biomed Opt; 2006; 11(3):34026. PubMed ID: 16822075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses.
    Marcos S; Rosales P; Llorente L; Jiménez-Alfaro I
    J Cataract Refract Surg; 2007 Feb; 33(2):217-26. PubMed ID: 17276261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the eye's optical system by ocular wavefront tomography.
    Wei X; Thibos L
    Opt Express; 2008 Dec; 16(25):20490-502. PubMed ID: 19065188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line of sight and alternative representations of aberrations of the eye.
    Klein SA; Garcia DD
    J Refract Surg; 2000; 16(5):S630-5. PubMed ID: 11019888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of corneal topography and wavefront aberrations in young Singaporeans.
    Zhu M; Collins MJ; Yeo AC
    Clin Exp Optom; 2013 Sep; 96(5):486-93. PubMed ID: 23611288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye.
    Benito A; Redondo M; Artal P
    Am J Ophthalmol; 2009 Mar; 147(3):424-431.e1. PubMed ID: 19058779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave-front aberrations in the anterior corneal surface and the whole eye.
    He JC; Gwiazda J; Thorn F; Held R
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jul; 20(7):1155-63. PubMed ID: 12868623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.