BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19725744)

  • 1. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.
    Chitchian S; Weldon TP; Fried NM
    J Biomed Opt; 2009; 14(4):044033. PubMed ID: 19725744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.
    Chitchian S; Fiddy M; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3016-9. PubMed ID: 19163341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.
    Chitchian S; Fiddy MA; Fried NM
    J Biomed Opt; 2009; 14(1):014031. PubMed ID: 19256719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging the cavernous nerves in the rat prostate using optical coherence tomography.
    Fried NM; Rais-Bahrami S; Lagoda GA; Chuang Y; Burnett AL; Su LM
    Lasers Surg Med; 2007 Jan; 39(1):36-41. PubMed ID: 17163481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images.
    Gopinath B; Shanthi N
    Australas Phys Eng Sci Med; 2013 Jun; 36(2):219-30. PubMed ID: 23690210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of the surfaces of the retinal layer from OCT images.
    Haeker M; Abràmoff M; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):800-7. PubMed ID: 17354964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.
    Garvin MK; Abramoff MD; Kardon R; Russell SR; Wu X; Sonka M
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1495-505. PubMed ID: 18815101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information.
    Klein S; van der Heide UA; Lips IM; van Vulpen M; Staring M; Pluim JP
    Med Phys; 2008 Apr; 35(4):1407-17. PubMed ID: 18491536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy.
    Rais-Bahrami S; Levinson AW; Fried NM; Lagoda GA; Hristov A; Chuang Y; Burnett AL; Su LM
    Urology; 2008 Jul; 72(1):198-204. PubMed ID: 18280549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.
    Haeker M; Abràmoff MD; Wu X; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):244-51. PubMed ID: 18051065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
    Rathke F; Schmidt S; Schnörr C
    Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography.
    Qi X; Pan Y; Hu Z; Kang W; Willis JE; Olowe K; Sivak MV; Rollins AM
    J Biomed Opt; 2008; 13(5):054055. PubMed ID: 19021435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.