BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 19725878)

  • 1. The role of Tyr71 in Streptomyces trypsin on the recognition mechanism of structural protein substrates.
    Uesugi Y; Usuki H; Iwabuchi M; Hatanaka T
    FEBS J; 2009 Oct; 276(19):5634-46. PubMed ID: 19725878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dissection of Streptomyces trypsin on substrate recognition.
    Uesugi Y; Usuki H; Arima J; Iwabuchi M; Hatanaka T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1295-304. PubMed ID: 21767670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the primary substrate specificity of Streptomyces griseus trypsin.
    Page MJ; Wong SL; Hewitt J; Strynadka NC; MacGillivray RT
    Biochemistry; 2003 Aug; 42(30):9060-6. PubMed ID: 12885239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of Streptomyces griseus protease B mutants with desired alterations in primary specificity using a library screening strategy.
    Sidhu SS; Borgford TJ
    J Mol Biol; 1996 Mar; 257(2):233-45. PubMed ID: 8609620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two bacterial collagenolytic serine proteases have different topological specificities.
    Uesugi Y; Arima J; Usuki H; Iwabuchi M; Hatanaka T
    Biochim Biophys Acta; 2008 Apr; 1784(4):716-26. PubMed ID: 18302947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The invariant F283 and its strategic position in the hydrophobic cleft of Streptomyces jumonjinensis isopenicillin N synthase active site are functionally important.
    Wong E; Sim J; Sim TS
    Biochem Biophys Res Commun; 2001 May; 283(3):621-6. PubMed ID: 11341769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities.
    Pletnev VZ; Zamolodchikova TS; Pangborn WA; Duax WL
    Proteins; 2000 Oct; 41(1):8-16. PubMed ID: 10944388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket.
    Perera E; Pons T; Hernandez D; Moyano FJ; Martínez-Rodríguez G; Mancera JM
    FEBS J; 2010 Sep; 277(17):3489-501. PubMed ID: 20649906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases.
    Hoch U; Zhang Z; Kroetz DL; Ortiz de Montellano PR
    Arch Biochem Biophys; 2000 Jan; 373(1):63-71. PubMed ID: 10620324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin: a case study in the structural determinants of enzyme specificity.
    Hedstrom L
    Biol Chem; 1996; 377(7-8):465-70. PubMed ID: 8922280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes.
    Murphy ME; Moult J; Bleackley RC; Gershenfeld H; Weissman IL; James MN
    Proteins; 1988; 4(3):190-204. PubMed ID: 3237717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus.
    Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z
    Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting trypsin to chymotrypsin: structural determinants of S1' specificity.
    Kurth T; Ullmann D; Jakubke HD; Hedstrom L
    Biochemistry; 1997 Aug; 36(33):10098-104. PubMed ID: 9254605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus.
    Fundoiano-Hershcovitz Y; Rabinovitch L; Langut Y; Reiland V; Shoham G; Shoham Y
    FEBS Lett; 2004 Jul; 571(1-3):192-6. PubMed ID: 15280041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis.
    Funa N; Ohnishi Y; Ebizuka Y; Horinouchi S
    Biochem J; 2002 Nov; 367(Pt 3):781-9. PubMed ID: 12139488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii.
    An JH; Lee GY; Jung JW; Lee W; Kim YS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):159-66. PubMed ID: 10548546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases.
    Pilbák S; Tomin A; Rétey J; Poppe L
    FEBS J; 2006 Mar; 273(5):1004-19. PubMed ID: 16478474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity.
    Kallio P; Sultana A; Niemi J; Mäntsälä P; Schneider G
    J Mol Biol; 2006 Mar; 357(1):210-20. PubMed ID: 16414075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide.
    Ling Z; Kang Z; Liu Y; Liu S; Chen J; Du G
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1819-27. PubMed ID: 24458877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.