These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19726144)

  • 1. Development of latent fingermarks on thermal paper: preliminary investigation into use of iodine fuming.
    Jasuja OP; Singh G
    Forensic Sci Int; 2009 Nov; 192(1-3):e11-6. PubMed ID: 19726144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixing latent fingermarks developed by iodine fuming: a new method.
    Jasuja OP; Kaur A; Kumar P
    Forensic Sci Int; 2012 Nov; 223(1-3):e47-52. PubMed ID: 23103178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal development of latent fingermarks on porous surfaces--further observations and refinements.
    Song DF; Sommerville D; Brown AG; Shimmon RG; Reedy BJ; Tahtouh M
    Forensic Sci Int; 2011 Jan; 204(1-3):97-110. PubMed ID: 20554406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of DFO/PVP and its application to latent fingermarks development on thermal paper.
    Luo YP; Zhao YB; Liu S
    Forensic Sci Int; 2013 Jun; 229(1-3):75-9. PubMed ID: 23683911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into the use of a portable cyanoacrylate fuming system (SUPERfume®) and aluminum powder for the development of latent fingermarks.
    Fieldhouse SJ
    J Forensic Sci; 2011 Nov; 56(6):1514-20. PubMed ID: 21790600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the sequence of latent fingermarks and writing or printing on white office paper.
    Fieldhouse SJ; Kalantzis N; Platt AW
    Forensic Sci Int; 2011 Mar; 206(1-3):155-60. PubMed ID: 20800395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of relative humidity on the effectiveness of the cyanoacrylate fuming process for fingermark development and on the microstructure of the developed marks.
    Paine M; Bandey HL; Bleay SM; Willson H
    Forensic Sci Int; 2011 Oct; 212(1-3):130-42. PubMed ID: 21719220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The recovery of latent fingermarks and DNA using a silicone-based casting material.
    Shalhoub R; Quinones I; Ames C; Multaney B; Curtis S; Seeboruth H; Moore S; Daniel B
    Forensic Sci Int; 2008 Jul; 178(2-3):199-203. PubMed ID: 18502070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituted naphthoquinones as novel amino acid sensitive reagents for the detection of latent fingermarks on paper surfaces.
    Jelly R; Lewis SW; Lennard C; Lim KF; Almog J
    Talanta; 2010 Oct; 82(5):1717-24. PubMed ID: 20875568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The detection and enhancement of latent fingermarks using infrared chemical imaging.
    Tahtouh M; Kalman JR; Roux C; Lennard C; Reedy BJ
    J Forensic Sci; 2005 Jan; 50(1):64-72. PubMed ID: 15830998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary efficiency evaluation of development methods applied to aged sebaceous latent fingermarks.
    Poletti T; Berneira LM; Passos LF; da Rosa BN; de Pereira CMP; Mariotti KC
    Sci Justice; 2021 Jul; 61(4):378-383. PubMed ID: 34172126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of latent fingermarks on surfaces submerged in water: Optimization studies for phase transfer catalyst (PTC) based reagents.
    Jasuja OP; Kumar P; Singh G
    Sci Justice; 2015 Sep; 55(5):335-42. PubMed ID: 26385716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.
    Farrugia KJ; Fraser J; Friel L; Adams D; Attard-Montalto N; Deacon P
    Forensic Sci Int; 2015 Dec; 257():54-70. PubMed ID: 26282511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of iodine-benzoflavone and ruthenium tetroxide spray reagents for the detection of latent fingermarks at the crime scene.
    Flynn K; Maynard P; du Pasquier E; Lennard C; Stoilovic M; Roux C
    J Forensic Sci; 2004 Jul; 49(4):707-15. PubMed ID: 15317184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effectiveness of strong afterglow phosphor powder in the detection of fingermarks.
    Liu L; Zhang Z; Zhang L; Zhai Y
    Forensic Sci Int; 2009 Jan; 183(1-3):45-9. PubMed ID: 19019590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fixing Transient Iodine on Developed Latent Fingermarks.
    Kumari Sharma K; Kannikanti GH; Baggi TRR; Vaidya JR
    J Forensic Sci; 2019 Nov; 64(6):1859-1866. PubMed ID: 31390094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of fingermarks and visualizing DNA.
    Kanokwongnuwut P; Kirkbride KP; Kobus H; Linacre A
    Forensic Sci Int; 2019 Jul; 300():99-105. PubMed ID: 31085432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermal visualisation of latent fingermarks on metallic surfaces.
    Wightman G; O'Connor D
    Forensic Sci Int; 2011 Jan; 204(1-3):88-96. PubMed ID: 20591589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene.
    Jones BJ; Downham R; Sears VG
    J Forensic Sci; 2012 Jan; 57(1):196-200. PubMed ID: 22074186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the development of latent fingermarks on thermal papers.
    Hallez F; Ledroit P; Henrot D; Malo M; Tamisier L
    Forensic Sci Int; 2019 May; 298():20-33. PubMed ID: 30877947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.